Jitendra Malik

is this you? claim profile


Professor of EECS University of California at Berkeley

  • Habitat: A Platform for Embodied AI Research

    We present Habitat, a new platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation, before transferring the learned skills to reality. Specifically, Habitat consists of the following: 1. Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, multiple sensors, and generic 3D dataset handling (with built-in support for SUNCG, Matterport3D, Gibson datasets). Habitat-Sim is fast -- when rendering a scene from the Matterport3D dataset, Habitat-Sim achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU, which is orders of magnitude faster than the closest simulator. 2. Habitat-API: a modular high-level library for end-to-end development of embodied AI algorithms -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), configuring and training embodied agents (via imitation or reinforcement learning, or via classic SLAM), and benchmarking using standard metrics. These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or `merely' impractical. Specifically, in the context of point-goal navigation (1) we revisit the comparison between learning and SLAM approaches from two recent works and find evidence for the opposite conclusion -- that learning outperforms SLAM, if scaled to total experience far surpassing that of previous investigations, and (2) we conduct the first cross-dataset generalization experiments train, test x Matterport3D, Gibson for multiple sensors blind, RGB, RGBD, D and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.

    04/02/2019 ∙ by Manolis Savva, et al. ∙ 58 share

    read it

  • Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors

    Unconditional image generation has recently been dominated by generative adversarial networks (GANs). GAN methods train a generator which regresses images from random noise vectors, as well as a discriminator that attempts to differentiate between the generated images and a training set of real images. GANs have shown amazing results at generating realistic looking images. Despite their success, GANs suffer from critical drawbacks including: unstable training and mode-dropping. The weaknesses in GANs have motivated research into alternatives including: variational auto-encoders (VAEs), latent embedding learning methods (e.g. GLO) and nearest-neighbor based implicit maximum likelihood estimation (IMLE). Unfortunately at the moment, GANs still significantly outperform the alternative methods for image generation. In this work, we present a novel method - Generative Latent Nearest Neighbors (GLANN) - for training generative models without adversarial training. GLANN combines the strengths of IMLE and GLO in a way that overcomes the main drawbacks of each method. Consequently, GLANN generates images that are far better than GLO and IMLE. Our method does not suffer from mode collapse which plagues GAN training and is much more stable. Qualitative results show that GLANN outperforms a baseline consisting of 800 GANs and VAEs on commonly used datasets. Our models are also shown to be effective for training truly non-adversarial unsupervised image translation.

    12/21/2018 ∙ by Yedid Hoshen, et al. ∙ 28 share

    read it

  • Implicit Maximum Likelihood Estimation

    Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

    09/24/2018 ∙ by Ke Li, et al. ∙ 20 share

    read it

  • Learning Independent Object Motion from Unlabelled Stereoscopic Videos

    We present a system for learning motion of independently moving objects from stereo videos. The only human annotation used in our system are 2D object bounding boxes which introduce the notion of objects to our system. Unlike prior learning based work which has focused on predicting dense pixel-wise optical flow field and/or a depth map for each image, we propose to predict object instance specific 3D scene flow maps and instance masks from which we are able to derive the motion direction and speed for each object instance. Our network takes the 3D geometry of the problem into account which allows it to correlate the input images. We present experiments evaluating the accuracy of our 3D flow vectors, as well as depth maps and projected 2D optical flow where our jointly learned system outperforms earlier approaches trained for each task independently.

    01/07/2019 ∙ by Zhe Cao, et al. ∙ 16 share

    read it

  • Diverse Image Synthesis from Semantic Layouts via Conditional IMLE

    Most existing methods for conditional image synthesis are only able to generate a single plausible image for any given input, or at best a fixed number of plausible images. In this paper, we focus on the problem of generating images from semantic segmentation maps and present a simple new method that can generate an arbitrary number of images with diverse appearance for the same semantic layout. Unlike most existing approaches which adopt the GAN framework, our method is based on the recently introduced Implicit Maximum Likelihood Estimation framework. Compared to the leading approach, our method is able to generate more diverse images while producing fewer artifacts despite using the same architecture. The learned latent space also has sensible structure despite the lack of supervision that encourages such behaviour.

    11/29/2018 ∙ by Ke Li, et al. ∙ 16 share

    read it

  • Trajectory Normalized Gradients for Distributed Optimization

    Recently, researchers proposed various low-precision gradient compression, for efficient communication in large-scale distributed optimization. Based on these work, we try to reduce the communication complexity from a new direction. We pursue an ideal bijective mapping between two spaces of gradient distribution, so that the mapped gradient carries greater information entropy after the compression. In our setting, all servers should share a reference gradient in advance, and they communicate via the normalized gradients, which are the subtraction or quotient, between current gradients and the reference. To obtain a reference vector that yields a stronger signal-to-noise ratio, dynamically in each iteration, we extract and fuse information from the past trajectory in hindsight, and search for an optimal reference for compression. We name this to be the trajectory-based normalized gradients (TNG). It bridges the research from different societies, like coding, optimization, systems, and learning. It is easy to implement and can universally combine with existing algorithms. Our experiments on benchmarking hard non-convex functions, convex problems like logistic regression demonstrate that TNG is more compression-efficient for communication of distributed optimization of general functions.

    01/24/2019 ∙ by Jianqiao Wangni, et al. ∙ 14 share

    read it

  • Learning Individual Styles of Conversational Gesture

    Human speech is often accompanied by hand and arm gestures. Given audio speech input, we generate plausible gestures to go along with the sound. Specifically, we perform cross-modal translation from "in-the-wild" monologue speech of a single speaker to their hand and arm motion. We train on unlabeled videos for which we only have noisy pseudo ground truth from an automatic pose detection system. Our proposed model significantly outperforms baseline methods in a quantitative comparison. To support research toward obtaining a computational understanding of the relationship between gesture and speech, we release a large video dataset of person-specific gestures. The project website with video, code and data can be found at http://people.eecs.berkeley.edu/ shiry/speech2gesture .

    06/10/2019 ∙ by Shiry Ginosar, et al. ∙ 11 share

    read it

  • Combining Optimal Control and Learning for Visual Navigation in Novel Environments

    Model-based control is a popular paradigm for robot navigation because it can leverage a known dynamics model to efficiently plan robust robot trajectories. However, it is challenging to use model-based methods in settings where the environment is a priori unknown and can only be observed partially through on-board sensors on the robot. In this work, we address this short-coming by coupling model-based control with learning-based perception. The learning-based perception module produces a series of waypoints that guide the robot to the goal via a collision-free path. These waypoints are used by a model-based planner to generate a smooth and dynamically feasible trajectory that is executed on the physical system using feedback control. Our experiments in simulated real-world cluttered environments and on an actual ground vehicle demonstrate that the proposed approach can reach goal locations more reliably and efficiently in novel, previously-unknown environments as compared to a purely end-to-end learning-based alternative. Our approach is successfully able to exhibit goal-driven behavior without relying on detailed explicit 3D maps of the environment, works well with low frame rates, and generalizes well from simulation to the real world. Videos describing our approach and experiments are available on the project website.

    03/06/2019 ∙ by Somil Bansal, et al. ∙ 10 share

    read it

  • Learning Navigation Subroutines by Watching Videos

    Hierarchies are an effective way to boost sample efficiency in reinforcement learning, and computational efficiency in classical planning. However, acquiring hierarchies via hand-design (as in classical planning) is suboptimal, while acquiring them via end-to-end reward based training (as in reinforcement learning) is unstable and still prohibitively expensive. In this paper, we pursue an alternate paradigm for acquiring such hierarchical abstractions (or visuo-motor subroutines), via use of passive first person observation data. We use an inverse model trained on small amounts of interaction data to pseudo-label the passive first person videos with agent actions. Visuo-motor subroutines are acquired from these pseudo-labeled videos by learning a latent intent-conditioned policy that predicts the inferred pseudo-actions from the corresponding image observations. We demonstrate our proposed approach in context of navigation, and show that we can successfully learn consistent and diverse visuo-motor subroutines from passive first-person videos. We demonstrate the utility of our acquired visuo-motor subroutines by using them as is for exploration, and as sub-policies in a hierarchical RL framework for reaching point goals and semantic goals. We also demonstrate behavior of our subroutines in the real world, by deploying them on a real robotic platform. Project website with videos, code and data: https://ashishkumar1993.github.io/subroutines/.

    05/29/2019 ∙ by Ashish Kumar, et al. ∙ 9 share

    read it

  • SFV: Reinforcement Learning of Physical Skills from Videos

    Data-driven character animation based on motion capture can produce highly naturalistic behaviors and, when combined with physics simulation, can provide for natural procedural responses to physical perturbations, environmental changes, and morphological discrepancies. Motion capture remains the most popular source of motion data, but collecting mocap data typically requires heavily instrumented environments and actors. In this paper, we propose a method that enables physically simulated characters to learn skills from videos (SFV). Our approach, based on deep pose estimation and deep reinforcement learning, allows data-driven animation to leverage the abundance of publicly available video clips from the web, such as those from YouTube. This has the potential to enable fast and easy design of character controllers simply by querying for video recordings of the desired behavior. The resulting controllers are robust to perturbations, can be adapted to new settings, can perform basic object interactions, and can be retargeted to new morphologies via reinforcement learning. We further demonstrate that our method can predict potential human motions from still images, by forward simulation of learned controllers initialized from the observed pose. Our framework is able to learn a broad range of dynamic skills, including locomotion, acrobatics, and martial arts.

    10/08/2018 ∙ by Xue Bin Peng, et al. ∙ 8 share

    read it

  • Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Active Tasks

    One of the ultimate promises of computer vision is to help robotic agents perform active tasks, like delivering packages or doing household chores. However, the conventional approach to solving "vision" is to define a set of offline recognition problems (e.g. object detection) and solve those first. This approach faces a challenge from the recent rise of Deep Reinforcement Learning frameworks that learn active tasks from scratch using images as input. This poses a set of fundamental questions: what is the role of computer vision if everything can be learned from scratch? Could intermediate vision tasks actually be useful for performing arbitrary downstream active tasks? We show that proper use of mid-level perception confers significant advantages over training from scratch. We implement a perception module as a set of mid-level visual representations and demonstrate that learning active tasks with mid-level features is significantly more sample-efficient than scratch and able to generalize in situations where the from-scratch approach fails. However, we show that realizing these gains requires careful selection of the particular mid-level features for each downstream task. Finally, we put forth a simple and efficient perception module based on the results of our study, which can be adopted as a rather generic perception module for active frameworks.

    12/31/2018 ∙ by Alexander Sax, et al. ∙ 8 share

    read it