Thore Graepel

is this you? claim profile


Professor of Machine Learning, Computer Science at UCL, Research Lead at Google DeepMind.

  • Autocurricula and the Emergence of Innovation from Social Interaction: A Manifesto for Multi-Agent Intelligence Research

    Evolution has produced a multi-scale mosaic of interacting adaptive units. Innovations arise when perturbations push parts of the system away from stable equilibria into new regimes where previously well-adapted solutions no longer work. Here we explore the hypothesis that multi-agent systems sometimes display intrinsic dynamics arising from competition and cooperation that provide a naturally emergent curriculum, which we term an autocurriculum. The solution of one social task often begets new social tasks, continually generating novel challenges, and thereby promoting innovation. Under certain conditions these challenges may become increasingly complex over time, demanding that agents accumulate ever more innovations.

    03/02/2019 ∙ by Joel Z. Leibo, et al. ∙ 16 share

    read it

  • Open-ended Learning in Symmetric Zero-sum Games

    Zero-sum games such as chess and poker are, abstractly, functions that evaluate pairs of agents, for example labeling them `winner' and `loser'. If the game is approximately transitive, then self-play generates sequences of agents of increasing strength. However, nontransitive games, such as rock-paper-scissors, can exhibit strategic cycles, and there is no longer a clear objective -- we want agents to increase in strength, but against whom is unclear. In this paper, we introduce a geometric framework for formulating agent objectives in zero-sum games, in order to construct adaptive sequences of objectives that yield open-ended learning. The framework allows us to reason about population performance in nontransitive games, and enables the development of a new algorithm (rectified Nash response, PSRO_rN) that uses game-theoretic niching to construct diverse populations of effective agents, producing a stronger set of agents than existing algorithms. We apply PSRO_rN to two highly nontransitive resource allocation games and find that PSRO_rN consistently outperforms the existing alternatives.

    01/23/2019 ∙ by David Balduzzi, et al. ∙ 16 share

    read it

  • Malthusian Reinforcement Learning

    Here we explore a new algorithmic framework for multi-agent reinforcement learning, called Malthusian reinforcement learning, which extends self-play to include fitness-linked population size dynamics that drive ongoing innovation. In Malthusian RL, increases in a subpopulation's average return drive subsequent increases in its size, just as Thomas Malthus argued in 1798 was the relationship between preindustrial income levels and population growth. Malthusian reinforcement learning harnesses the competitive pressures arising from growing and shrinking population size to drive agents to explore regions of state and policy spaces that they could not otherwise reach. Furthermore, in environments where there are potential gains from specialization and division of labor, we show that Malthusian reinforcement learning is better positioned to take advantage of such synergies than algorithms based on self-play.

    12/17/2018 ∙ by Joel Z. Leibo, et al. ∙ 10 share

    read it

  • Relational Forward Models for Multi-Agent Learning

    The behavioral dynamics of multi-agent systems have a rich and orderly structure, which can be leveraged to understand these systems, and to improve how artificial agents learn to operate in them. Here we introduce Relational Forward Models (RFM) for multi-agent learning, networks that can learn to make accurate predictions of agents' future behavior in multi-agent environments. Because these models operate on the discrete entities and relations present in the environment, they produce interpretable intermediate representations which offer insights into what drives agents' behavior, and what events mediate the intensity and valence of social interactions. Furthermore, we show that embedding RFM modules inside agents results in faster learning systems compared to non-augmented baselines. As more and more of the autonomous systems we develop and interact with become multi-agent in nature, developing richer analysis tools for characterizing how and why agents make decisions is increasingly necessary. Moreover, developing artificial agents that quickly and safely learn to coordinate with one another, and with humans in shared environments, is crucial.

    09/28/2018 ∙ by Andrea Tacchetti, et al. ∙ 4 share

    read it

  • Human-level performance in first-person multiplayer games with population-based deep reinforcement learning

    Recent progress in artificial intelligence through reinforcement learning (RL) has shown great success on increasingly complex single-agent environments and two-player turn-based games. However, the real-world contains multiple agents, each learning and acting independently to cooperate and compete with other agents, and environments reflecting this degree of complexity remain an open challenge. In this work, we demonstrate for the first time that an agent can achieve human-level in a popular 3D multiplayer first-person video game, Quake III Arena Capture the Flag, using only pixels and game points as input. These results were achieved by a novel two-tier optimisation process in which a population of independent RL agents are trained concurrently from thousands of parallel matches with agents playing in teams together and against each other on randomly generated environments. Each agent in the population learns its own internal reward signal to complement the sparse delayed reward from winning, and selects actions using a novel temporally hierarchical representation that enables the agent to reason at multiple timescales. During game-play, these agents display human-like behaviours such as navigating, following, and defending based on a rich learned representation that is shown to encode high-level game knowledge. In an extensive tournament-style evaluation the trained agents exceeded the win-rate of strong human players both as teammates and opponents, and proved far stronger than existing state-of-the-art agents. These results demonstrate a significant jump in the capabilities of artificial agents, bringing us closer to the goal of human-level intelligence.

    07/03/2018 ∙ by Max Jaderberg, et al. ∙ 2 share

    read it

  • Emergent Coordination Through Competition

    We study the emergence of cooperative behaviors in reinforcement learning agents by introducing a challenging competitive multi-agent soccer environment with continuous simulated physics. We demonstrate that decentralized, population-based training with co-play can lead to a progression in agents' behaviors: from random, to simple ball chasing, and finally showing evidence of cooperation. Our study highlights several of the challenges encountered in large scale multi-agent training in continuous control. In particular, we demonstrate that the automatic optimization of simple shaping rewards, not themselves conducive to co-operative behavior, can lead to long-horizon team behavior. We further apply an evaluation scheme, grounded by game theoretic principals, that can assess agent performance in the absence of pre-defined evaluation tasks or human baselines.

    02/19/2019 ∙ by Siqi Liu, et al. ∙ 2 share

    read it

  • Value-Decomposition Networks For Cooperative Multi-Agent Learning

    We study the problem of cooperative multi-agent reinforcement learning with a single joint reward signal. This class of learning problems is difficult because of the often large combined action and observation spaces. In the fully centralized and decentralized approaches, we find the problem of spurious rewards and a phenomenon we call the "lazy agent" problem, which arises due to partial observability. We address these problems by training individual agents with a novel value decomposition network architecture, which learns to decompose the team value function into agent-wise value functions. We perform an experimental evaluation across a range of partially-observable multi-agent domains and show that learning such value-decompositions leads to superior results, in particular when combined with weight sharing, role information and information channels.

    06/16/2017 ∙ by Peter Sunehag, et al. ∙ 0 share

    read it

  • Learning Shared Representations in Multi-task Reinforcement Learning

    We investigate a paradigm in multi-task reinforcement learning (MT-RL) in which an agent is placed in an environment and needs to learn to perform a series of tasks, within this space. Since the environment does not change, there is potentially a lot of common ground amongst tasks and learning to solve them individually seems extremely wasteful. In this paper, we explicitly model and learn this shared structure as it arises in the state-action value space. We will show how one can jointly learn optimal value-functions by modifying the popular Value-Iteration and Policy-Iteration procedures to accommodate this shared representation assumption and leverage the power of multi-task supervised learning. Finally, we demonstrate that the proposed model and training procedures, are able to infer good value functions, even under low samples regimes. In addition to data efficiency, we will show in our analysis, that learning abstractions of the state space jointly across tasks leads to more robust, transferable representations with the potential for better generalization. this shared representation assumption and leverage the power of multi-task supervised learning. Finally, we demonstrate that the proposed model and training procedures, are able to infer good value functions, even under low samples regimes. In addition to data efficiency, we will show in our analysis, that learning abstractions of the state space jointly across tasks leads to more robust, transferable representations with the potential for better generalization.

    03/07/2016 ∙ by Diana Borsa, et al. ∙ 0 share

    read it

  • A Comparison of learning algorithms on the Arcade Learning Environment

    Reinforcement learning agents have traditionally been evaluated on small toy problems. With advances in computing power and the advent of the Arcade Learning Environment, it is now possible to evaluate algorithms on diverse and difficult problems within a consistent framework. We discuss some challenges posed by the arcade learning environment which do not manifest in simpler environments. We then provide a comparison of model-free, linear learning algorithms on this challenging problem set.

    10/31/2014 ∙ by Aaron Defazio, et al. ∙ 0 share

    read it

  • The Wreath Process: A totally generative model of geometric shape based on nested symmetries

    We consider the problem of modelling noisy but highly symmetric shapes that can be viewed as hierarchies of whole-part relationships in which higher level objects are composed of transformed collections of lower level objects. To this end, we propose the stochastic wreath process, a fully generative probabilistic model of drawings. Following Leyton's "Generative Theory of Shape", we represent shapes as sequences of transformation groups composed through a wreath product. This representation emphasizes the maximization of transfer --- the idea that the most compact and meaningful representation of a given shape is achieved by maximizing the re-use of existing building blocks or parts. The proposed stochastic wreath process extends Leyton's theory by defining a probability distribution over geometric shapes in terms of noise processes that are aligned with the generative group structure of the shape. We propose an inference scheme for recovering the generative history of given images in terms of the wreath process using reversible jump Markov chain Monte Carlo methods and Approximate Bayesian Computation. In the context of sketching we demonstrate the feasibility and limitations of this approach on model-generated and real data.

    06/09/2015 ∙ by Diana Borsa, et al. ∙ 0 share

    read it

  • SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases

    The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.

    07/19/2012 ∙ by Simon Lacoste-Julien, et al. ∙ 0 share

    read it