Sanja Fidler

is this you? claim profile

0

Assistant Professor at University of Toronto

  • Gated-SCNN: Gated Shape CNNs for Semantic Segmentation

    Current state-of-the-art methods for image segmentation form a dense image representation where the color, shape and texture information are all processed together inside a deep CNN. This however may not be ideal as they contain very different type of information relevant for recognition. Here, we propose a new two-stream CNN architecture for semantic segmentation that explicitly wires shape information as a separate processing branch, i.e. shape stream, that processes information in parallel to the classical stream. Key to this architecture is a new type of gates that connect the intermediate layers of the two streams. Specifically, we use the higher-level activations in the classical stream to gate the lower-level activations in the shape stream, effectively removing noise and helping the shape stream to only focus on processing the relevant boundary-related information. This enables us to use a very shallow architecture for the shape stream that operates on the image-level resolution. Our experiments show that this leads to a highly effective architecture that produces sharper predictions around object boundaries and significantly boosts performance on thinner and smaller objects. Our method achieves state-of-the-art performance on the Cityscapes benchmark, in terms of both mask (mIoU) and boundary (F-score) quality, improving by 2 baselines.

    07/12/2019 ∙ by Towaki Takikawa, et al. ∙ 14 share

    read it

  • Meta-Sim: Learning to Generate Synthetic Datasets

    Training models to high-end performance requires availability of large labeled datasets, which are expensive to get. The goal of our work is to automatically synthesize labeled datasets that are relevant for a downstream task. We propose Meta-Sim, which learns a generative model of synthetic scenes, and obtain images as well as its corresponding ground-truth via a graphics engine. We parametrize our dataset generator with a neural network, which learns to modify attributes of scene graphs obtained from probabilistic scene grammars, so as to minimize the distribution gap between its rendered outputs and target data. If the real dataset comes with a small labeled validation set, we additionally aim to optimize a meta-objective, i.e. downstream task performance. Experiments show that the proposed method can greatly improve content generation quality over a human-engineered probabilistic scene grammar, both qualitatively and quantitatively as measured by performance on a downstream task.

    04/25/2019 ∙ by Amlan Kar, et al. ∙ 12 share

    read it

  • EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

    Reducing the test time resource requirements of a neural network while preserving test accuracy is crucial for running inference on resource-constrained devices. To achieve this goal, we introduce a novel network reparameterization based on the Kronecker-factored eigenbasis (KFE), and then apply Hessian-based structured pruning methods in this basis. As opposed to existing Hessian-based pruning algorithms which do pruning in parameter coordinates, our method works in the KFE where different weights are approximately independent, enabling accurate pruning and fast computation. We demonstrate empirically the effectiveness of the proposed method through extensive experiments. In particular, we highlight that the improvements are especially significant for more challenging datasets and networks. With negligible loss of accuracy, an iterative-pruning version gives a 10× reduction in model size and a 8× reduction in FLOPs on wide ResNet32.

    05/15/2019 ∙ by Chaoqi Wang, et al. ∙ 10 share

    read it

  • SurfConv: Bridging 3D and 2D Convolution for RGBD Images

    We tackle the problem of using 3D information in convolutional neural networks for down-stream recognition tasks. Using depth as an additional channel alongside the RGB input has the scale variance problem present in image convolution based approaches. On the other hand, 3D convolution wastes a large amount of memory on mostly unoccupied 3D space, which consists of only the surface visible to the sensor. Instead, we propose SurfConv, which "slides" compact 2D filters along the visible 3D surface. SurfConv is formulated as a simple depth-aware multi-scale 2D convolution, through a new Data-Driven Depth Discretization (D4) scheme. We demonstrate the effectiveness of our method on indoor and outdoor 3D semantic segmentation datasets. Our method achieves state-of-the-art performance with less than 30 convolution-based approaches.

    12/04/2018 ∙ by Hang Chu, et al. ∙ 8 share

    read it

  • ACTRCE: Augmenting Experience via Teacher's Advice For Multi-Goal Reinforcement Learning

    Sparse reward is one of the most challenging problems in reinforcement learning (RL). Hindsight Experience Replay (HER) attempts to address this issue by converting a failed experience to a successful one by relabeling the goals. Despite its effectiveness, HER has limited applicability because it lacks a compact and universal goal representation. We present Augmenting experienCe via TeacheR's adviCE (ACTRCE), an efficient reinforcement learning technique that extends the HER framework using natural language as the goal representation. We first analyze the differences among goal representation, and show that ACTRCE can efficiently solve difficult reinforcement learning problems in challenging 3D navigation tasks, whereas HER with non-language goal representation failed to learn. We also show that with language goal representations, the agent can generalize to unseen instructions, and even generalize to instructions with unseen lexicons. We further demonstrate it is crucial to use hindsight advice to solve challenging tasks, and even small amount of advice is sufficient for the agent to achieve good performance.

    02/12/2019 ∙ by Harris Chan, et al. ∙ 6 share

    read it

  • Be Your Own Prada: Fashion Synthesis with Structural Coherence

    We present a novel and effective approach for generating new clothing on a wearer through generative adversarial learning. Given an input image of a person and a sentence describing a different outfit, our model "redresses" the person as desired, while at the same time keeping the wearer and her/his pose unchanged. Generating new outfits with precise regions conforming to a language description while retaining wearer's body structure is a new challenging task. Existing generative adversarial networks are not ideal in ensuring global coherence of structure given both the input photograph and language description as conditions. We address this challenge by decomposing the complex generative process into two conditional stages. In the first stage, we generate a plausible semantic segmentation map that obeys the wearer's pose as a latent spatial arrangement. An effective spatial constraint is formulated to guide the generation of this semantic segmentation map. In the second stage, a generative model with a newly proposed compositional mapping layer is used to render the final image with precise regions and textures conditioned on this map. We extended the DeepFashion dataset [8] by collecting sentence descriptions for 79K images. We demonstrate the effectiveness of our approach through both quantitative and qualitative evaluations. A user study is also conducted. The codes and the data are available at http://mmlab.ie.cuhk. edu.hk/projects/FashionGAN/.

    10/19/2017 ∙ by Shizhan Zhu, et al. ∙ 0 share

    read it

  • Situation Recognition with Graph Neural Networks

    We address the problem of recognizing situations in images. Given an image, the task is to predict the most salient verb (action), and fill its semantic roles such as who is performing the action, what is the source and target of the action, etc. Different verbs have different roles (e.g. attacking has weapon), and each role can take on many possible values (nouns). We propose a model based on Graph Neural Networks that allows us to efficiently capture joint dependencies between roles using neural networks defined on a graph. Experiments with different graph connectivities show that our approach that propagates information between roles significantly outperforms existing work, as well as multiple baselines. We obtain roughly 3-5 work in predicting the full situation. We also provide a thorough qualitative analysis of our model and influence of different roles in the verbs.

    08/14/2017 ∙ by Ruiyu Li, et al. ∙ 0 share

    read it

  • Song From PI: A Musically Plausible Network for Pop Music Generation

    We present a novel framework for generating pop music. Our model is a hierarchical Recurrent Neural Network, where the layers and the structure of the hierarchy encode our prior knowledge about how pop music is composed. In particular, the bottom layers generate the melody, while the higher levels produce the drums and chords. We conduct several human studies that show strong preference of our generated music over that produced by the recent method by Google. We additionally show two applications of our framework: neural dancing and karaoke, as well as neural story singing.

    11/10/2016 ∙ by Hang Chu, et al. ∙ 0 share

    read it

  • Open Vocabulary Scene Parsing

    Recognizing arbitrary objects in the wild has been a challenging problem due to the limitations of existing classification models and datasets. In this paper, we propose a new task that aims at parsing scenes with a large and open vocabulary, and several evaluation metrics are explored for this problem. Our proposed approach to this problem is a joint image pixel and word concept embeddings framework, where word concepts are connected by semantic relations. We validate the open vocabulary prediction ability of our framework on ADE20K dataset which covers a wide variety of scenes and objects. We further explore the trained joint embedding space to show its interpretability.

    03/26/2017 ∙ by Hang Zhao, et al. ∙ 0 share

    read it

  • Towards Diverse and Natural Image Descriptions via a Conditional GAN

    Despite the substantial progress in recent years, the image captioning techniques are still far from being perfect.Sentences produced by existing methods, e.g. those based on RNNs, are often overly rigid and lacking in variability. This issue is related to a learning principle widely used in practice, that is, to maximize the likelihood of training samples. This principle encourages high resemblance to the "ground-truth" captions while suppressing other reasonable descriptions. Conventional evaluation metrics, e.g. BLEU and METEOR, also favor such restrictive methods. In this paper, we explore an alternative approach, with the aim to improve the naturalness and diversity -- two essential properties of human expression. Specifically, we propose a new framework based on Conditional Generative Adversarial Networks (CGAN), which jointly learns a generator to produce descriptions conditioned on images and an evaluator to assess how well a description fits the visual content. It is noteworthy that training a sequence generator is nontrivial. We overcome the difficulty by Policy Gradient, a strategy stemming from Reinforcement Learning, which allows the generator to receive early feedback along the way. We tested our method on two large datasets, where it performed competitively against real people in our user study and outperformed other methods on various tasks.

    03/17/2017 ∙ by Bo Dai, et al. ∙ 0 share

    read it

  • TorontoCity: Seeing the World with a Million Eyes

    In this paper we introduce the TorontoCity benchmark, which covers the full greater Toronto area (GTA) with 712.5 km^2 of land, 8439 km of road and around 400,000 buildings. Our benchmark provides different perspectives of the world captured from airplanes, drones and cars driving around the city. Manually labeling such a large scale dataset is infeasible. Instead, we propose to utilize different sources of high-precision maps to create our ground truth. Towards this goal, we develop algorithms that allow us to align all data sources with the maps while requiring minimal human supervision. We have designed a wide variety of tasks including building height estimation (reconstruction), road centerline and curb extraction, building instance segmentation, building contour extraction (reorganization), semantic labeling and scene type classification (recognition). Our pilot study shows that most of these tasks are still difficult for modern convolutional neural networks.

    12/01/2016 ∙ by Shenlong Wang, et al. ∙ 0 share

    read it