Ilya Sutskever

is this you? claim profile

0

Ilya Sutskever is an informatics scientist who works in the field of machine learning and currently serves as OpenAI’s Chief Scientist. He is the co-inventor of the renowned neural network AlexNet. He and Oriol Vinyals and Quoc Le invented Sequence to Sequence Learning. Sutskever is also AlphaGo and TensorFlow co-inventor.

Sutskever obtained his B.Sc, M.Sc, and Ph.D. in computer science from the Department of Computer Science at the University of Toronto, under Geoffrey Hinton’s supervision.

After graduating in 2012, Sutskever spent two months at Stanford University as a postdoc with Andrew Ng. He then returned to the University of Toronto and joined the new Hinton research group DNNResearch. Google acquired DNNResearch four months later, in March 2013 and employed Sutskever as a Google Brain research scientist. At Google Brain, Sutskever worked with Oriol Vinyals and Quoc Le on sequence by sequence learning algorithms.

In 2015, Sutskever had been nominated for the MIT Technology Review 35 Innovators Under 35. At the end of 2015, Sutskever left Google to be the Director of the newly founded OpenAI Institute.

  • Generating Long Sequences with Sparse Transformers

    Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(n √(n)). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.

    04/23/2019 ∙ by Rewon Child, et al. ∙ 12 share

    read it

  • FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

    A promising class of generative models maps points from a simple distribution to a complex distribution through an invertible neural network. Likelihood-based training of these models requires restricting their architectures to allow cheap computation of Jacobian determinants. Alternatively, the Jacobian trace can be used if the transformation is specified by an ordinary differential equation. In this paper, we use Hutchinson's trace estimator to give a scalable unbiased estimate of the log-density. The result is a continuous-time invertible generative model with unbiased density estimation and one-pass sampling, while allowing unrestricted neural network architectures. We demonstrate our approach on high-dimensional density estimation, image generation, and variational inference, achieving the state-of-the-art among exact likelihood methods with efficient sampling.

    10/02/2018 ∙ by Will Grathwohl, et al. ∙ 6 share

    read it

  • Addressing the Rare Word Problem in Neural Machine Translation

    Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.

    10/30/2014 ∙ by Minh-Thang Luong, et al. ∙ 0 share

    read it

  • Exploiting Similarities among Languages for Machine Translation

    Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data. It uses distributed representation of words and learns a linear mapping between vector spaces of languages. Despite its simplicity, our method is surprisingly effective: we can achieve almost 90 of words between English and Spanish. This method makes little assumption about the languages, so it can be used to extend and refine dictionaries and translation tables for any language pairs.

    09/17/2013 ∙ by Tomas Mikolov, et al. ∙ 0 share

    read it

  • Sequence to Sequence Learning with Neural Networks

    Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.

    09/10/2014 ∙ by Ilya Sutskever, et al. ∙ 0 share

    read it

  • Reinforcement Learning Neural Turing Machines - Revised

    The Neural Turing Machine (NTM) is more expressive than all previously considered models because of its external memory. It can be viewed as a broader effort to use abstract external Interfaces and to learn a parametric model that interacts with them. The capabilities of a model can be extended by providing it with proper Interfaces that interact with the world. These external Interfaces include memory, a database, a search engine, or a piece of software such as a theorem verifier. Some of these Interfaces are provided by the developers of the model. However, many important existing Interfaces, such as databases and search engines, are discrete. We examine feasibility of learning models to interact with discrete Interfaces. We investigate the following discrete Interfaces: a memory Tape, an input Tape, and an output Tape. We use a Reinforcement Learning algorithm to train a neural network that interacts with such Interfaces to solve simple algorithmic tasks. Our Interfaces are expressive enough to make our model Turing complete.

    05/04/2015 ∙ by Wojciech Zaremba, et al. ∙ 0 share

    read it

  • Distributed Representations of Words and Phrases and their Compositionality

    The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.

    10/16/2013 ∙ by Tomas Mikolov, et al. ∙ 0 share

    read it

  • Learning Factored Representations in a Deep Mixture of Experts

    Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations.

    12/16/2013 ∙ by David Eigen, et al. ∙ 0 share

    read it

  • MuProp: Unbiased Backpropagation for Stochastic Neural Networks

    Deep neural networks are powerful parametric models that can be trained efficiently using the backpropagation algorithm. Stochastic neural networks combine the power of large parametric functions with that of graphical models, which makes it possible to learn very complex distributions. However, as backpropagation is not directly applicable to stochastic networks that include discrete sampling operations within their computational graph, training such networks remains difficult. We present MuProp, an unbiased gradient estimator for stochastic networks, designed to make this task easier. MuProp improves on the likelihood-ratio estimator by reducing its variance using a control variate based on the first-order Taylor expansion of a mean-field network. Crucially, unlike prior attempts at using backpropagation for training stochastic networks, the resulting estimator is unbiased and well behaved. Our experiments on structured output prediction and discrete latent variable modeling demonstrate that MuProp yields consistently good performance across a range of difficult tasks.

    11/16/2015 ∙ by Shixiang Gu, et al. ∙ 0 share

    read it

  • Third-Person Imitation Learning

    Reinforcement learning (RL) makes it possible to train agents capable of achiev- ing sophisticated goals in complex and uncertain environments. A key difficulty in reinforcement learning is specifying a reward function for the agent to optimize. Traditionally, imitation learning in RL has been used to overcome this problem. Unfortunately, hitherto imitation learning methods tend to require that demonstra- tions are supplied in the first-person: the agent is provided with a sequence of states and a specification of the actions that it should have taken. While powerful, this kind of imitation learning is limited by the relatively hard problem of collect- ing first-person demonstrations. Humans address this problem by learning from third-person demonstrations: they observe other humans perform tasks, infer the task, and accomplish the same task themselves. In this paper, we present a method for unsupervised third-person imitation learn- ing. Here third-person refers to training an agent to correctly achieve a simple goal in a simple environment when it is provided a demonstration of a teacher achieving the same goal but from a different viewpoint; and unsupervised refers to the fact that the agent receives only these third-person demonstrations, and is not provided a correspondence between teacher states and student states. Our methods primary insight is that recent advances from domain confusion can be utilized to yield domain agnostic features which are crucial during the training process. To validate our approach, we report successful experiments on learning from third-person demonstrations in a pointmass domain, a reacher domain, and inverted pendulum.

    03/06/2017 ∙ by Bradly C. Stadie, et al. ∙ 0 share

    read it

  • Towards Principled Unsupervised Learning

    General unsupervised learning is a long-standing conceptual problem in machine learning. Supervised learning is successful because it can be solved by the minimization of the training error cost function. Unsupervised learning is not as successful, because the unsupervised objective may be unrelated to the supervised task of interest. For an example, density modelling and reconstruction have often been used for unsupervised learning, but they did not produced the sought-after performance gains, because they have no knowledge of the supervised tasks. In this paper, we present an unsupervised cost function which we name the Output Distribution Matching (ODM) cost, which measures a divergence between the distribution of predictions and distributions of labels. The ODM cost is appealing because it is consistent with the supervised cost in the following sense: a perfect supervised classifier is also perfect according to the ODM cost. Therefore, by aggressively optimizing the ODM cost, we are almost guaranteed to improve our supervised performance whenever the space of possible predictions is exponentially large. We demonstrate that the ODM cost works well on number of small and semi-artificial datasets using no (or almost no) labelled training cases. Finally, we show that the ODM cost can be used for one-shot domain adaptation, which allows the model to classify inputs that differ from the input distribution in significant ways without the need for prior exposure to the new domain.

    11/19/2015 ∙ by Ilya Sutskever, et al. ∙ 0 share

    read it