nlp-sentiment-analysis
Understanding user comments via natural language processing with TensorFlow and Scikit-Learn
view repo
We show that a variety of modern deep learning tasks exhibit a "double-descent" phenomenon where, as we increase model size, performance first gets worse and then gets better. Moreover, we show that double descent occurs not just as a function of model size, but also as a function of the number of training epochs. We unify the above phenomena by defining a new complexity measure we call the effective model complexity and conjecture a generalized double descent with respect to this measure. Furthermore, our notion of model complexity allows us to identify certain regimes where increasing (even quadrupling) the number of train samples actually hurts test performance.
READ FULL TEXTUnderstanding user comments via natural language processing with TensorFlow and Scikit-Learn
None
This project is best on the homonymous paper
We investigate double descent more deeply and try to precisely characterize the phenomenon under different settings. Specifically, we focus on the impact of label noise and regularization on double descent. None of the existing works consider these aspects in detail and we hypothesize that these play an integral role in double descent.