Jifeng Dai

is this you? claim profile

0

Lead Researcher at Microsoft Research Asia

  • MMDetection: Open MMLab Detection Toolbox and Benchmark

    We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated.

    06/17/2019 ∙ by Kai Chen, et al. ∙ 1 share

    read it

  • Towards High Performance Video Object Detection

    There has been significant progresses for image object detection in recent years. Nevertheless, video object detection has received little attention, although it is more challenging and more important in practical scenarios. Built upon the recent works, this work proposes a unified approach based on the principle of multi-frame end-to-end learning of features and cross-frame motion. Our approach extends prior works with three new techniques and steadily pushes forward the performance envelope (speed-accuracy tradeoff), towards high performance video object detection.

    11/30/2017 ∙ by Xizhou Zhu, et al. ∙ 0 share

    read it

  • Relation Networks for Object Detection

    Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector.

    11/30/2017 ∙ by Han Hu, et al. ∙ 0 share

    read it

  • Flow-Guided Feature Aggregation for Video Object Detection

    Extending state-of-the-art object detectors from image to video is challenging. The accuracy of detection suffers from degenerated object appearances in videos, e.g., motion blur, video defocus, rare poses, etc. Existing work attempts to exploit temporal information on box level, but such methods are not trained end-to-end. We present flow-guided feature aggregation, an accurate and end-to-end learning framework for video object detection. It leverages temporal coherence on feature level instead. It improves the per-frame features by aggregation of nearby features along the motion paths, and thus improves the video recognition accuracy. Our method significantly improves upon strong single-frame baselines in ImageNet VID, especially for more challenging fast moving objects. Our framework is principled, and on par with the best engineered systems winning the ImageNet VID challenges 2016, without additional bells-and-whistles. The proposed method, together with Deep Feature Flow, powered the winning entry of ImageNet VID challenges 2017. The code is available at https://github.com/msracver/Flow-Guided-Feature-Aggregation.

    03/29/2017 ∙ by Xizhou Zhu, et al. ∙ 0 share

    read it

  • Deformable Convolutional Networks

    Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released.

    03/17/2017 ∙ by Jifeng Dai, et al. ∙ 0 share

    read it

  • Deep Feature Flow for Video Recognition

    Deep convolutional neutral networks have achieved great success on image recognition tasks. Yet, it is non-trivial to transfer the state-of-the-art image recognition networks to videos as per-frame evaluation is too slow and unaffordable. We present deep feature flow, a fast and accurate framework for video recognition. It runs the expensive convolutional sub-network only on sparse key frames and propagates their deep feature maps to other frames via a flow field. It achieves significant speedup as flow computation is relatively fast. The end-to-end training of the whole architecture significantly boosts the recognition accuracy. Deep feature flow is flexible and general. It is validated on two recent large scale video datasets. It makes a large step towards practical video recognition.

    11/23/2016 ∙ by Xizhou Zhu, et al. ∙ 0 share

    read it

  • Fully Convolutional Instance-aware Semantic Segmentation

    We present the first fully convolutional end-to-end solution for instance-aware semantic segmentation task. It inherits all the merits of FCNs for semantic segmentation and instance mask proposal. It performs instance mask prediction and classification jointly. The underlying convolutional representation is fully shared between the two sub-tasks, as well as between all regions of interest. The proposed network is highly integrated and achieves state-of-the-art performance in both accuracy and efficiency. It wins the COCO 2016 segmentation competition by a large margin. Code would be released at <https://github.com/daijifeng001/TA-FCN>.

    11/23/2016 ∙ by Yi Li, et al. ∙ 0 share

    read it

  • R-FCN: Object Detection via Region-based Fully Convolutional Networks

    We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive score maps to address a dilemma between translation-invariance in image classification and translation-variance in object detection. Our method can thus naturally adopt fully convolutional image classifier backbones, such as the latest Residual Networks (ResNets), for object detection. We show competitive results on the PASCAL VOC datasets (e.g., 83.6 achieved at a test-time speed of 170ms per image, 2.5-20x faster than the Faster R-CNN counterpart. Code is made publicly available at: https://github.com/daijifeng001/r-fcn

    05/20/2016 ∙ by Jifeng Dai, et al. ∙ 0 share

    read it

  • ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation

    Large-scale data is of crucial importance for learning semantic segmentation models, but annotating per-pixel masks is a tedious and inefficient procedure. We note that for the topic of interactive image segmentation, scribbles are very widely used in academic research and commercial software, and are recognized as one of the most user-friendly ways of interacting. In this paper, we propose to use scribbles to annotate images, and develop an algorithm to train convolutional networks for semantic segmentation supervised by scribbles. Our algorithm is based on a graphical model that jointly propagates information from scribbles to unmarked pixels and learns network parameters. We present competitive object semantic segmentation results on the PASCAL VOC dataset by using scribbles as annotations. Scribbles are also favored for annotating stuff (e.g., water, sky, grass) that has no well-defined shape, and our method shows excellent results on the PASCAL-CONTEXT dataset thanks to extra inexpensive scribble annotations. Our scribble annotations on PASCAL VOC are available at http://research.microsoft.com/en-us/um/people/jifdai/downloads/scribble_sup

    04/18/2016 ∙ by Di Lin, et al. ∙ 0 share

    read it

  • Instance-sensitive Fully Convolutional Networks

    Fully convolutional networks (FCNs) have been proven very successful for semantic segmentation, but the FCN outputs are unaware of object instances. In this paper, we develop FCNs that are capable of proposing instance-level segment candidates. In contrast to the previous FCN that generates one score map, our FCN is designed to compute a small set of instance-sensitive score maps, each of which is the outcome of a pixel-wise classifier of a relative position to instances. On top of these instance-sensitive score maps, a simple assembling module is able to output instance candidate at each position. In contrast to the recent DeepMask method for segmenting instances, our method does not have any high-dimensional layer related to the mask resolution, but instead exploits image local coherence for estimating instances. We present competitive results of instance segment proposal on both PASCAL VOC and MS COCO.

    03/29/2016 ∙ by Jifeng Dai, et al. ∙ 0 share

    read it

  • Instance-aware Semantic Segmentation via Multi-task Network Cascades

    Semantic segmentation research has recently witnessed rapid progress, but many leading methods are unable to identify object instances. In this paper, we present Multi-task Network Cascades for instance-aware semantic segmentation. Our model consists of three networks, respectively differentiating instances, estimating masks, and categorizing objects. These networks form a cascaded structure, and are designed to share their convolutional features. We develop an algorithm for the nontrivial end-to-end training of this causal, cascaded structure. Our solution is a clean, single-step training framework and can be generalized to cascades that have more stages. We demonstrate state-of-the-art instance-aware semantic segmentation accuracy on PASCAL VOC. Meanwhile, our method takes only 360ms testing an image using VGG-16, which is two orders of magnitude faster than previous systems for this challenging problem. As a by product, our method also achieves compelling object detection results which surpass the competitive Fast/Faster R-CNN systems. The method described in this paper is the foundation of our submissions to the MS COCO 2015 segmentation competition, where we won the 1st place.

    12/14/2015 ∙ by Jifeng Dai, et al. ∙ 0 share

    read it