Resolution Adaptive Networks for Efficient Inference
Recently, adaptive inference is gaining increasing attention due to its high computational efficiency. Different from existing works, which mainly exploit architecture redundancy for adaptive network design, in this paper, we focus on spatial redundancy of input samples, and propose a novel Resolution Adaptive Network (RANet). Our motivation is that low-resolution representations can be sufficient for classifying "easy" samples containing canonical objects, while high-resolution features are curial for recognizing some "hard" ones. In RANet, input images are first routed to a lightweight sub-network that efficiently extracts coarse feature maps, and samples with high confident predictions will exit early from the sub-network. The high-resolution paths are only activated for those "hard" samples whose previous predictions are unreliable. By adaptively processing the features in varying resolutions, the proposed RANet can significantly improve its computational efficiency. Experiments on three classification benchmark tasks (CIFAR-10, CIFAR-100 and ImageNet) demonstrate the effectiveness of the proposed model in both anytime prediction setting and budgeted batch classification setting.
READ FULL TEXT