Jacob Andreas

is this you? claim profile

0

Fifth-year Ph.D. student in the Berkeley NLP Group and the Berkeley AI Research Lab.

  • A Survey of Reinforcement Learning Informed by Natural Language

    To be successful in real-world tasks, Reinforcement Learning (RL) needs to exploit the compositional, relational, and hierarchical structure of the world, and learn to transfer it to the task at hand. Recent advances in representation learning for language make it possible to build models that acquire world knowledge from text corpora and integrate this knowledge into downstream decision making problems. We thus argue that the time is right to investigate a tight integration of natural language understanding into RL in particular. We survey the state of the field, including work on instruction following, text games, and learning from textual domain knowledge. Finally, we call for the development of new environments as well as further investigation into the potential uses of recent Natural Language Processing (NLP) techniques for such tasks.

    06/10/2019 ∙ by Jelena Luketina, et al. ∙ 52 share

    read it

  • Measuring Compositionality in Representation Learning

    Many machine learning algorithms represent input data with vector embeddings or discrete codes. When inputs exhibit compositional structure (e.g. objects built from parts or procedures from subroutines), it is natural to ask whether this compositional structure is reflected in the the inputs' learned representations. While the assessment of compositionality in languages has received significant attention in linguistics and adjacent fields, the machine learning literature lacks general-purpose tools for producing graded measurements of compositional structure in more general (e.g. vector-valued) representation spaces. We describe a procedure for evaluating compositionality by measuring how well the true representation-producing model can be approximated by a model that explicitly composes a collection of inferred representational primitives. We use the procedure to provide formal and empirical characterizations of compositional structure in a variety of settings, exploring the relationship between compositionality and learning dynamics, human judgments, representational similarity, and generalization.

    02/19/2019 ∙ by Jacob Andreas, et al. ∙ 4 share

    read it

  • Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games?

    Deep reinforcement learning has achieved many recent successes, but our understanding of its strengths and limitations is hampered by the lack of rich environments in which we can fully characterize optimal behavior, and correspondingly diagnose individual actions against such a characterization. Here we consider a family of combinatorial games, arising from work of Erdos, Selfridge, and Spencer, and we propose their use as environments for evaluating and comparing different approaches to reinforcement learning. These games have a number of appealing features: they are challenging for current learning approaches, but they form (i) a low-dimensional, simply parametrized environment where (ii) there is a linear closed form solution for optimal behavior from any state, and (iii) the difficulty of the game can be tuned by changing environment parameters in an interpretable way. We use these Erdos-Selfridge-Spencer games not only to compare different algorithms, but also to compare approaches based on supervised and reinforcement learning, to analyze the power of multi-agent approaches in improving performance, and to evaluate generalization to environments outside the training set.

    11/07/2017 ∙ by Maithra Raghu, et al. ∙ 0 share

    read it

  • Modular Multitask Reinforcement Learning with Policy Sketches

    We describe a framework for multitask deep reinforcement learning guided by policy sketches. Sketches annotate tasks with sequences of named subtasks, providing information about high-level structural relationships among tasks but not how to implement them---specifically not providing the detailed guidance used by much previous work on learning policy abstractions for RL (e.g. intermediate rewards, subtask completion signals, or intrinsic motivations). To learn from sketches, we present a model that associates every subtask with a modular subpolicy, and jointly maximizes reward over full task-specific policies by tying parameters across shared subpolicies. Optimization is accomplished via a decoupled actor--critic training objective that facilitates learning common behaviors from multiple dissimilar reward functions. We evaluate the effectiveness of our approach in three environments featuring both discrete and continuous control, and with sparse rewards that can be obtained only after completing a number of high-level subgoals. Experiments show that using our approach to learn policies guided by sketches gives better performance than existing techniques for learning task-specific or shared policies, while naturally inducing a library of interpretable primitive behaviors that can be recombined to rapidly adapt to new tasks.

    11/06/2016 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it

  • Modeling Relationships in Referential Expressions with Compositional Modular Networks

    People often refer to entities in an image in terms of their relationships with other entities. For example, "the black cat sitting under the table" refers to both a "black cat" entity and its relationship with another "table" entity. Understanding these relationships is essential for interpreting and grounding such natural language expressions. Most prior work focuses on either grounding entire referential expressions holistically to one region, or localizing relationships based on a fixed set of categories. In this paper we instead present a modular deep architecture capable of analyzing referential expressions into their component parts, identifying entities and relationships mentioned in the input expression and grounding them all in the scene. We call this approach Compositional Modular Networks (CMNs): a novel architecture that learns linguistic analysis and visual inference end-to-end. Our approach is built around two types of neural modules that inspect local regions and pairwise interactions between regions. We evaluate CMNs on multiple referential expression datasets, outperforming state-of-the-art approaches on all tasks.

    11/30/2016 ∙ by Ronghang Hu, et al. ∙ 0 share

    read it

  • On the accuracy of self-normalized log-linear models

    Calculation of the log-normalizer is a major computational obstacle in applications of log-linear models with large output spaces. The problem of fast normalizer computation has therefore attracted significant attention in the theoretical and applied machine learning literature. In this paper, we analyze a recently proposed technique known as "self-normalization", which introduces a regularization term in training to penalize log normalizers for deviating from zero. This makes it possible to use unnormalized model scores as approximate probabilities. Empirical evidence suggests that self-normalization is extremely effective, but a theoretical understanding of why it should work, and how generally it can be applied, is largely lacking. We prove generalization bounds on the estimated variance of normalizers and upper bounds on the loss in accuracy due to self-normalization, describe classes of input distributions that self-normalize easily, and construct explicit examples of high-variance input distributions. Our theoretical results make predictions about the difficulty of fitting self-normalized models to several classes of distributions, and we conclude with empirical validation of these predictions.

    06/12/2015 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it

  • Analogs of Linguistic Structure in Deep Representations

    We investigate the compositional structure of message vectors computed by a deep network trained on a communication game. By comparing truth-conditional representations of encoder-produced message vectors to human-produced referring expressions, we are able to identify aligned (vector, utterance) pairs with the same meaning. We then search for structured relationships among these aligned pairs to discover simple vector space transformations corresponding to negation, conjunction, and disjunction. Our results suggest that neural representations are capable of spontaneously developing a "syntax" with functional analogues to qualitative properties of natural language.

    07/25/2017 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it

  • A Minimal Span-Based Neural Constituency Parser

    In this work, we present a minimal neural model for constituency parsing based on independent scoring of labels and spans. We show that this model is not only compatible with classical dynamic programming techniques, but also admits a novel greedy top-down inference algorithm based on recursive partitioning of the input. We demonstrate empirically that both prediction schemes are competitive with recent work, and when combined with basic extensions to the scoring model are capable of achieving state-of-the-art single-model performance on the Penn Treebank (91.79 F1) and strong performance on the French Treebank (82.23 F1).

    05/10/2017 ∙ by Mitchell Stern, et al. ∙ 0 share

    read it

  • Translating Neuralese

    Several approaches have recently been proposed for learning decentralized deep multiagent policies that coordinate via a differentiable communication channel. While these policies are effective for many tasks, interpretation of their induced communication strategies has remained a challenge. Here we propose to interpret agents' messages by translating them. Unlike in typical machine translation problems, we have no parallel data to learn from. Instead we develop a translation model based on the insight that agent messages and natural language strings mean the same thing if they induce the same belief about the world in a listener. We present theoretical guarantees and empirical evidence that our approach preserves both the semantics and pragmatics of messages by ensuring that players communicating through a translation layer do not suffer a substantial loss in reward relative to players with a common language.

    04/23/2017 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it

  • Reasoning About Pragmatics with Neural Listeners and Speakers

    We present a model for pragmatically describing scenes, in which contrastive behavior results from a combination of inference-driven pragmatics and learned semantics. Like previous learned approaches to language generation, our model uses a simple feature-driven architecture (here a pair of neural "listener" and "speaker" models) to ground language in the world. Like inference-driven approaches to pragmatics, our model actively reasons about listener behavior when selecting utterances. For training, our approach requires only ordinary captions, annotated _without_ demonstration of the pragmatic behavior the model ultimately exhibits. In human evaluations on a referring expression game, our approach succeeds 81 existing techniques.

    04/02/2016 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it

  • Learning to Compose Neural Networks for Question Answering

    We describe a question answering model that applies to both images and structured knowledge bases. The model uses natural language strings to automatically assemble neural networks from a collection of composable modules. Parameters for these modules are learned jointly with network-assembly parameters via reinforcement learning, with only (world, question, answer) triples as supervision. Our approach, which we term a dynamic neural model network, achieves state-of-the-art results on benchmark datasets in both visual and structured domains.

    01/07/2016 ∙ by Jacob Andreas, et al. ∙ 0 share

    read it