PVD-AL: Progressive Volume Distillation with Active Learning for Efficient Conversion Between Different NeRF Architectures
Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their compositions, have their trade-offs. For instance, Hashtables-based representations allow for faster rendering but lack clear geometric meaning, making spatial-relation-aware editing challenging. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversions between different architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a Three-Levels of active learning technique provides continuous feedback during the distillation process, resulting in high-performance results. Empirical evidence is presented to validate our method on multiple benchmark datasets. For example, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10 20X faster speed and 0.8dB 2dB higher PSNR than training the NeRF model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements. Project website:http://sk-fun.fun/PVD-AL.
READ FULL TEXT