Yuxi Li

is this you? claim profile

0 followers

  • Reinforcement Learning Applications

    We start with a brief introduction to reinforcement learning (RL), about its successful stories, basics, an example, issues, the ICML 2019 Workshop on RL for Real Life, how to use it, study material and an outlook. Then we discuss a selection of RL applications, including recommender systems, computer systems, energy, finance, healthcare, robotics, and transportation.

    08/19/2019 ∙ by Yuxi Li, et al. ∙ 169 share

    read it

  • Annotation-Free Cardiac Vessel Segmentation via Knowledge Transfer from Retinal Images

    Segmenting coronary arteries is challenging, as classic unsupervised methods fail to produce satisfactory results and modern supervised learning (deep learning) requires manual annotation which is often time-consuming and can some time be infeasible. To solve this problem, we propose a knowledge transfer based shape-consistent generative adversarial network (SC-GAN), which is an annotation-free approach that uses the knowledge from publicly available annotated fundus dataset to segment coronary arteries. The proposed network is trained in an end-to-end fashion, generating and segmenting synthetic images that maintain the background of coronary angiography and preserve the vascular structures of retinal vessels and coronary arteries. We train and evaluate the proposed model on a dataset of 1092 digital subtraction angiography images, and experiments demonstrate the supreme accuracy of the proposed method on coronary arteries segmentation.

    07/26/2019 ∙ by Fei Yu, et al. ∙ 2 share

    read it

  • Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

    Object detection has made great progress in the past few years along with the development of deep learning. However, most current object detection methods are resource hungry, which hinders their wide deployment to many resource restricted usages such as usages on always-on devices, battery-powered low-end devices, etc. This paper considers the resource and accuracy trade-off for resource-restricted usages during designing the whole object detection framework. Based on the deeply supervised object detection (DSOD) framework, we propose Tiny-DSOD dedicating to resource-restricted usages. Tiny-DSOD introduces two innovative and ultra-efficient architecture blocks: depthwise dense block (DDB) based backbone and depthwise feature-pyramid-network (D-FPN) based front-end. We conduct extensive experiments on three famous benchmarks (PASCAL VOC 2007, KITTI, and COCO), and compare Tiny-DSOD to the state-of-the-art ultra-efficient object detection solutions such as Tiny-YOLO, MobileNet-SSD (v1 & v2), SqueezeDet, Pelee, etc. Results show that Tiny-DSOD outperforms these solutions in all the three metrics (parameter-size, FLOPs, accuracy) in each comparison. For instance, Tiny-DSOD achieves 72.1 only 0.95M parameters and 1.06B FLOPs, which is by far the state-of-the-arts result with such a low resource requirement.

    07/29/2018 ∙ by Yuxi Li, et al. ∙ 0 share

    read it

  • Network Decoupling: From Regular to Depthwise Separable Convolutions

    Depthwise separable convolution has shown great efficiency in network design, but requires time-consuming training procedure with full training-set available. This paper first analyzes the mathematical relationship between regular convolutions and depthwise separable convolutions, and proves that the former one could be approximated with the latter one in closed form. We show depthwise separable convolutions are principal components of regular convolutions. And then we propose network decoupling (ND), a training-free method to accelerate convolutional neural networks (CNNs) by transferring pre-trained CNN models into the MobileNet-like depthwise separable convolution structure, with a promising speedup yet negligible accuracy loss. We further verify through experiments that the proposed method is orthogonal to other training-free methods like channel decomposition, spatial decomposition, etc. Combining the proposed method with them will bring even larger CNN speedup. For instance, ND itself achieves about 2X speedup for the widely used VGG16, and combined with other methods, it reaches 3.7X speedup with graceful accuracy degradation. We demonstrate that ND is widely applicable to classification networks like ResNet, and object detection network like SSD300.

    08/16/2018 ∙ by Jianbo Guo, et al. ∙ 0 share

    read it

  • Deep Reinforcement Learning

    We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and representation. Then we discuss important mechanisms for RL, including attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn. After that, we discuss RL applications, including games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art. Finally we summarize briefly, discuss challenges and opportunities, and close with an epilogue.

    10/15/2018 ∙ by Yuxi Li, et al. ∙ 0 share

    read it

  • Trained Rank Pruning for Efficient Deep Neural Networks

    The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation.

    12/06/2018 ∙ by Yuhui Xu, et al. ∙ 0 share

    read it

  • Group Re-Identification with Multi-grained Matching and Integration

    The task of re-identifying groups of people underdifferent camera views is an important yet less-studied problem.Group re-identification (Re-ID) is a very challenging task sinceit is not only adversely affected by common issues in traditionalsingle object Re-ID problems such as viewpoint and human posevariations, but it also suffers from changes in group layout andgroup membership. In this paper, we propose a novel conceptof group granularity by characterizing a group image by multi-grained objects: individual persons and sub-groups of two andthree people within a group. To achieve robust group Re-ID,we first introduce multi-grained representations which can beextracted via the development of two separate schemes, i.e. onewith hand-crafted descriptors and another with deep neuralnetworks. The proposed representation seeks to characterize bothappearance and spatial relations of multi-grained objects, and isfurther equipped with importance weights which capture varia-tions in intra-group dynamics. Optimal group-wise matching isfacilitated by a multi-order matching process which in turn,dynamically updates the importance weights in iterative fashion.We evaluated on three multi-camera group datasets containingcomplex scenarios and large dynamics, with experimental resultsdemonstrating the effectiveness of our approach.

    05/17/2019 ∙ by Weiyao Lin, et al. ∙ 0 share

    read it