Deep Reinforcement Learning: Opportunities and Challenges

02/23/2022
by   Yuxi Li, et al.
0

This article is a gentle discussion about the field of reinforcement learning for real life, about opportunities and challenges, with perspectives and without technical details, touching a broad range of topics. The article is based on both historical and recent research papers, surveys, tutorials, talks, blogs, and books. Various groups of readers, like researchers, engineers, students, managers, investors, officers, and people wanting to know more about the field, may find the article interesting. In this article, we first give a brief introduction to reinforcement learning (RL), and its relationship with deep learning, machine learning and AI. Then we discuss opportunities of RL, in particular, applications in products and services, games, recommender systems, robotics, transportation, economics and finance, healthcare, education, combinatorial optimization, computer systems, and science and engineering. The we discuss challenges, in particular, 1) foundation, 2) representation, 3) reward, 4) model, simulation, planning, and benchmarks, 5) learning to learn a.k.a. meta-learning, 6) off-policy/offline learning, 7) software development and deployment, 8) business perspectives, and 9) more challenges. We conclude with a discussion, attempting to answer: "Why has RL not been widely adopted in practice yet?" and "When is RL helpful?".

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset