Stefanos Zafeiriou

is this you? claim profile

0

Reader in Machine Learning and Computer Vision at Imperial College London, Senior Lecturer in Computer Vision/Statistical Machine Learning at Imperial College London from 2015-2017, Lecturer in Computer Vision/Statistical Machine Learning at Imperial College London from 2012-2015, Research Fellow (Junior Research Fellowship) at IImperial College London from 2011-2012, Research Fellow at Imperial College London from 2010-2011, Research Associate at Deparment of Computing, Imperial College London 2010, Research Associate at Department of Electrical and Electronic Engineering, Imperial College London from 2008-2010, Visitor at University of Houston 2009, PhD in Computer Vision and Statistical Machine Learning at Aristotle University of Thessaloniki

  • 3DFaceGAN: Adversarial Nets for 3D Face Representation, Generation, and Translation

    Over the past few years, Generative Adversarial Networks (GANs) have garnered increased interest among researchers in Computer Vision, with applications including, but not limited to, image generation, translation, imputation, and super-resolution. Nevertheless, no GAN-based method has been proposed in the literature that can successfully represent, generate or translate 3D facial shapes (meshes). This can be primarily attributed to two facts, namely that (a) publicly available 3D face databases are scarce as well as limited in terms of sample size and variability (e.g., few subjects, little diversity in race and gender), and (b) mesh convolutions for deep networks present several challenges that are not entirely tackled in the literature, leading to operator approximations and model instability, often failing to preserve high-frequency components of the distribution. As a result, linear methods such as Principal Component Analysis (PCA) have been mainly utilized towards 3D shape analysis, despite being unable to capture non-linearities and high frequency details of the 3D face - such as eyelid and lip variations. In this work, we present 3DFaceGAN, the first GAN tailored towards modeling the distribution of 3D facial surfaces, while retaining the high frequency details of 3D face shapes. We conduct an extensive series of both qualitative and quantitative experiments, where the merits of 3DFaceGAN are clearly demonstrated against other, state-of-the-art methods in tasks such as 3D shape representation, generation, and translation.

    05/01/2019 ∙ by Stylianos Moschoglou, et al. ∙ 68 share

    read it

  • GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction

    In the past few years, a lot of work has been done towards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs). In the most recent works, differentiable renderers were employed in order to learn the relationship between the facial identity features and the parameters of a 3D morphable model for shape and texture. The texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction of the state-of-the-art methods is still not capable of modelling textures in high fidelity. In this paper, we take a radically different approach and harness the power of Generative Adversarial Networks (GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is, we utilize GANs to train a very powerful generator of facial texture in UV space. Then, we revisit the original 3D Morphable Models (3DMMs) fitting approaches making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. We optimize the parameters with the supervision of pretrained deep identity features through our end-to-end differentiable framework. We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details.

    02/15/2019 ∙ by Baris Gecer, et al. ∙ 46 share

    read it

  • Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

    Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models were among the first attempts to create compact representations for such shapes; despite their effectiveness and simplicity, such models have limited representation power due to their linear formulation. Recently, non-linear learnable methods have been proposed, although most of them resort to intermediate representations, such as 3D grids of voxels or 2D views. In this paper, we introduce a convolutional mesh autoencoder and a GAN architecture based on the spiral convolutional operator, acting directly on the mesh and leveraging its underlying geometric structure. We provide an analysis of our convolution operator and demonstrate state-of-the-art results on 3D shape datasets compared to the linear Morphable Model and the recently proposed COMA model.

    05/08/2019 ∙ by Giorgos Bouritsas, et al. ∙ 26 share

    read it

  • Single Image 3D Hand Reconstruction with Mesh Convolutions

    Monocular 3D reconstruction of deformable objects, such as human body parts, has been typically approached by predicting parameters of heavyweight linear models. In this paper, we demonstrate an alternative solution that is based on the idea of encoding images into a latent non-linear representation of meshes. The prior on 3D hand shapes is learned by training an autoencoder with intrinsic graph convolutions performed in the spectral domain. The pre-trained decoder acts as a non-linear statistical deformable model. The latent parameters that reconstruct the shape and articulated pose of hands in the image are predicted using an image encoder. We show that our system reconstructs plausible meshes and operates in real-time. We evaluate the quality of the mesh reconstructions produced by the decoder on a new dataset and show latent space interpolation results. Our code, data, and models will be made publicly available.

    05/04/2019 ∙ by Dominik Kulon, et al. ∙ 26 share

    read it

  • Face Video Generation from a Single Image and Landmarks

    In this paper we are concerned with the challenging problem of producing a full image sequence of a deformable face given only an image and generic facial motions encoded by a set of sparse landmarks. To this end we build upon recent breakthroughs in image-to-image translation such as pix2pix, CycleGAN and StarGAN which learn Deep Convolutional Neural Networks (DCNNs) that learn to map aligned pairs or images between different domains (i.e., having different labels) and propose a new architecture which is not driven any more by labels but by spatial maps, facial landmarks. In particular, we propose the MotionGAN which transforms an input face image into a new one according to a heatmap of target landmarks. We show that it is possible to create very realistic face videos using a single image and a set of target landmarks. Furthermore, our method can be used to edit a facial image with arbitrary motions according to landmarks (e.g., expression, speech, etc.). This provides much more flexibility to face editing, expression transfer, facial video creation, etc. than models based on discrete expressions, audios or action units.

    04/25/2019 ∙ by Kritaphat Songsri-in, et al. ∙ 14 share

    read it

  • Synthesising 3D Facial Motion from "In-the-Wild" Speech

    Synthesising 3D facial motion from speech is a crucial problem manifesting in a multitude of applications such as computer games and movies. Recently proposed methods tackle this problem in controlled conditions of speech. In this paper, we introduce the first methodology for 3D facial motion synthesis from speech captured in arbitrary recording conditions ("in-the-wild") and independent of the speaker. For our purposes, we captured 4D sequences of people uttering 500 words, contained in the Lip Reading Words (LRW) a publicly available large-scale in-the-wild dataset, and built a set of 3D blendshapes appropriate for speech. We correlate the 3D shape parameters of the speech blendshapes to the LRW audio samples by means of a novel time-warping technique, named Deep Canonical Attentional Warping (DCAW), that can simultaneously learn hierarchical non-linear representations and a warping path in an end-to-end manner. We thoroughly evaluate our proposed methods, and show the ability of a deep learning model to synthesise 3D facial motion in handling different speakers and continuous speech signals in uncontrolled conditions.

    04/15/2019 ∙ by Panagiotis Tzirakis, et al. ∙ 12 share

    read it

  • Generating faces for affect analysis

    This paper presents a novel approach for synthesizing facial affect; either categorical, in terms of the six basic expressions (i.e., anger, disgust, fear, happiness, sadness and surprise), or dimensional, in terms of valence (i.e., how positive or negative is an emotion) and arousal (i.e., power of the emotion activation). In the Valence-Arousal case, a system is created, based on VA annotation of 600,000 frames from the 4DFAB database; in the categorical case, the system is based on the selection of apex frames of posed expression sequences from the 4DFAB. The proposed system accepts at its input: i) either the basic facial expression, or the pair of valence-arousal emotional state descriptors, which need to be synthesized and ii) a neutral 2D image of a person on which the corresponding affect will be synthesized. The proposed approach consists of the following steps: First, based on the provided desired emotional state, a set of 3D facial meshes is produced from the 4DFAB database and is used to build a blendshape model that generates the new facial affect. To synthesize this affect on the 2D neutral image, 3D Morphable Models fitting is performed and the reconstructed face is then deformed to generate the target facial expressions. Finally, the new face is rendered into the original image. Qualitative experimental studies illustrate the generation of realistic images, when the neutral image is sampled from a variety of well known lab-controlled or in-the-wild databases, including Aff-Wild, RECOLA, AffectNet, AFEW, Multi-PIE, AFEW-VA, BU-3DFE, Bosphorus, RAF-DB. Also, quantitative experiments are conducted, in which deep neural networks, trained using the generated images from each of the above databases in a data-augmentation framework, provide affect recognition; better performances are achieved through the presented approach when compared with the current state-of-the-art.

    11/12/2018 ∙ by Dimitrios Kollias, et al. ∙ 8 share

    read it

  • MeshGAN: Non-linear 3D Morphable Models of Faces

    Generative Adversarial Networks (GANs) are currently the method of choice for generating visual data. Certain GAN architectures and training methods have demonstrated exceptional performance in generating realistic synthetic images (in particular, of human faces). However, for 3D object, GANs still fall short of the success they have had with images. One of the reasons is due to the fact that so far GANs have been applied as 3D convolutional architectures to discrete volumetric representations of 3D objects. In this paper, we propose the first intrinsic GANs architecture operating directly on 3D meshes (named as MeshGAN). Both quantitative and qualitative results are provided to show that MeshGAN can be used to generate high-fidelity 3D face with rich identities and expressions.

    03/25/2019 ∙ by Shiyang Cheng, et al. ∙ 8 share

    read it

  • Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment

    Facial landmark localisation in images captured in-the-wild is an important and challenging problem. The current state-of-the-art revolves around certain kinds of Deep Convolutional Neural Networks (DCNNs) such as stacked U-Nets and Hourglass networks. In this work, we innovatively propose stacked dense U-Nets for this task. We design a novel scale aggregation network topology structure and a channel aggregation building block to improve the model's capacity without sacrificing the computational complexity and model size. With the assistance of deformable convolutions inside the stacked dense U-Nets and coherent loss for outside data transformation, our model obtains the ability to be spatially invariant to arbitrary input face images. Extensive experiments on many in-the-wild datasets, validate the robustness of the proposed method under extreme poses, exaggerated expressions and heavy occlusions. Finally, we show that accurate 3D face alignment can assist pose-invariant face recognition where we achieve a new state-of-the-art accuracy on CFP-FP.

    12/05/2018 ∙ by Jia Guo, et al. ∙ 4 share

    read it

  • 4DFAB: A Large Scale 4D Facial Expression Database for Biometric Applications

    The progress we are currently witnessing in many computer vision applications, including automatic face analysis, would not be made possible without tremendous efforts in collecting and annotating large scale visual databases. To this end, we propose 4DFAB, a new large scale database of dynamic high-resolution 3D faces (over 1,800,000 3D meshes). 4DFAB contains recordings of 180 subjects captured in four different sessions spanning over a five-year period. It contains 4D videos of subjects displaying both spontaneous and posed facial behaviours. The database can be used for both face and facial expression recognition, as well as behavioural biometrics. It can also be used to learn very powerful blendshapes for parametrising facial behaviour. In this paper, we conduct several experiments and demonstrate the usefulness of the database for various applications. The database will be made publicly available for research purposes.

    12/05/2017 ∙ by Shiyang Cheng, et al. ∙ 0 share

    read it

  • An Adversarial Neuro-Tensorial Approach For Learning Disentangled Representations

    Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, to mention a few. Each factor accounts for a source of variability in the data, while the multiplicative interactions of these factors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions (also refereed to as "in-the-wild") and label information is not available. In this paper, we propose the first unsupervised deep learning method for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we propose a deep latent variable model, where the multiplicative interactions of multiple latent factors of variation are explicitly modelled by means of multilinear (tensor) structure. We demonstrate that the proposed approach indeed learns disentangled representations of facial expressions and pose, which can be used in various applications, including face editing, as well as 3D face reconstruction and classification of facial expression, identity and pose.

    11/28/2017 ∙ by Mengjiao Wang, et al. ∙ 0 share

    read it