Eric P Xing

is this you? claim profile

0 followers

Professor of Machine Learning, Language Technology, Computer Science, Cargenie Mellon University

  • Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly

    Bayesian Optimisation (BO), refers to a suite of techniques for global optimisation of expensive black box functions, which use introspective Bayesian models of the function to efficiently find the optimum. While BO has been applied successfully in many applications, modern optimisation tasks usher in new challenges where conventional methods fail spectacularly. In this work, we present Dragonfly, an open source Python library for scalable and robust BO. Dragonfly incorporates multiple recently developed methods that allow BO to be applied in challenging real world settings; these include better methods for handling higher dimensional domains, methods for handling multi-fidelity evaluations when cheap approximations of an expensive function are available, methods for optimising over structured combinatorial spaces, such as the space of neural network architectures, and methods for handling parallel evaluations. Additionally, we develop new methodological improvements in BO for selecting the Bayesian model, selecting the acquisition function, and optimising over complex domains with different variable types and additional constraints. We compare Dragonfly to a suite of other packages and algorithms for global optimisation and demonstrate that when the above methods are integrated, they enable significant improvements in the performance of BO. The Dragonfly library is available at dragonfly.github.io.

    03/15/2019 ∙ by Kirthevasan Kandasamy, et al. ∙ 14 share

    read it

  • Stackelberg GAN: Towards Provable Minimax Equilibrium via Multi-Generator Architectures

    We study the problem of alleviating the instability issue in the GAN training procedure via new architecture design. The discrepancy between the minimax and maximin objective values could serve as a proxy for the difficulties that the alternating gradient descent encounters in the optimization of GANs. In this work, we give new results on the benefits of multi-generator architecture of GANs. We show that the minimax gap shrinks to ϵ as the number of generators increases with rate O(1/ϵ). This improves over the best-known result of O(1/ϵ^2). At the core of our techniques is a novel application of Shapley-Folkman lemma to the generic minimax problem, where in the literature the technique was only known to work when the objective function is restricted to the Lagrangian function of a constraint optimization problem. Our proposed Stackelberg GAN performs well experimentally in both synthetic and real-world datasets, improving Fréchet Inception Distance by 14.61% over the previous multi-generator GANs on the benchmark datasets.

    11/19/2018 ∙ by Hongyang Zhang, et al. ∙ 8 share

    read it

  • Knowledge-driven Encode, Retrieve, Paraphrase for Medical Image Report Generation

    Generating long and semantic-coherent reports to describe medical images poses great challenges towards bridging visual and linguistic modalities, incorporating medical domain knowledge, and generating realistic and accurate descriptions. We propose a novel Knowledge-driven Encode, Retrieve, Paraphrase (KERP) approach which reconciles traditional knowledge- and retrieval-based methods with modern learning-based methods for accurate and robust medical report generation. Specifically, KERP decomposes medical report generation into explicit medical abnormality graph learning and subsequent natural language modeling. KERP first employs an Encode module that transforms visual features into a structured abnormality graph by incorporating prior medical knowledge; then a Retrieve module that retrieves text templates based on the detected abnormalities; and lastly, a Paraphrase module that rewrites the templates according to specific cases. The core of KERP is a proposed generic implementation unit---Graph Transformer (GTR) that dynamically transforms high-level semantics between graph-structured data of multiple domains such as knowledge graphs, images and sequences. Experiments show that the proposed approach generates structured and robust reports supported with accurate abnormality description and explainable attentive regions, achieving the state-of-the-art results on two medical report benchmarks, with the best medical abnormality and disease classification accuracy and improved human evaluation performance.

    03/25/2019 ∙ by Christy Y. Li, et al. ∙ 8 share

    read it

  • Theoretically Principled Trade-off between Robustness and Accuracy

    We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although the problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we quantify the trade-off in terms of the gap between the risk for adversarial examples and the risk for non-adversarial examples. The challenge is to provide tight bounds on this quantity in terms of a surrogate loss. We give an optimal upper bound on this quantity in terms of classification-calibrated loss, which matches the lower bound in the worst case. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of 1,995 submissions in the robust model track, surpassing the runner-up approach by 11.41% in terms of mean ℓ_2 perturbation distance.

    01/24/2019 ∙ by Hongyang Zhang, et al. ∙ 4 share

    read it

  • Learning Robust Global Representations by Penalizing Local Predictive Power

    Despite their renowned predictive power on i.i.d. data, convolutional neural networks are known to rely more on high-frequency patterns that humans deem superficial than on low-frequency patterns that agree better with intuitions about what constitutes category membership. This paper proposes a method for training robust convolutional networks by penalizing the predictive power of the local representations learned by earlier layers. Intuitively, our networks are forced to discard predictive signals such as color and texture that can be gleaned from local receptive fields and to rely instead on the global structures of the image. Across a battery of synthetic and benchmark domain adaptation tasks, our method confers improved generalization out of the domain. Also, to evaluate cross-domain transfer, we introduce ImageNet-Sketch, a new dataset consisting of sketch-like images, that matches the ImageNet classification validation set in categories and scale.

    05/29/2019 ∙ by Haohan Wang, et al. ∙ 4 share

    read it

  • Unsupervised Domain Adaptation for Automatic Estimation of Cardiothoracic Ratio

    The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our system's prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.

    07/10/2018 ∙ by Nanqing Dong, et al. ∙ 2 share

    read it

  • Toward Understanding the Impact of Staleness in Distributed Machine Learning

    Many distributed machine learning (ML) systems adopt the non-synchronous execution in order to alleviate the network communication bottleneck, resulting in stale parameters that do not reflect the latest updates. Despite much development in large-scale ML, the effects of staleness on learning are inconclusive as it is challenging to directly monitor or control staleness in complex distributed environments. In this work, we study the convergence behaviors of a wide array of ML models and algorithms under delayed updates. Our extensive experiments reveal the rich diversity of the effects of staleness on the convergence of ML algorithms and offer insights into seemingly contradictory reports in the literature. The empirical findings also inspire a new convergence analysis of stochastic gradient descent in non-convex optimization under staleness, matching the best-known convergence rate of O(1/√(T)).

    10/08/2018 ∙ by Wei Dai, et al. ∙ 2 share

    read it

  • Adversarial Domain Adaptation Being Aware of Class Relationships

    Adversarial training is a useful approach to promote the learning of transferable representations across the source and target domains, which has been widely applied for domain adaptation (DA) tasks based on deep neural networks. Until very recently, existing adversarial domain adaptation (ADA) methods ignore the useful information from the label space, which is an important factor accountable for the complicated data distributions associated with different semantic classes. Especially, the inter-class semantic relationships have been rarely considered and discussed in the current work of transfer learning. In this paper, we propose a novel relationship-aware adversarial domain adaptation (RADA) algorithm, which first utilizes a single multi-class domain discriminator to enforce the learning of inter-class dependency structure during domain-adversarial training and then aligns this structure with the inter-class dependencies that are characterized from training the label predictor on the source domain. Specifically, we impose a regularization term to penalize the structure discrepancy between the inter-class dependencies respectively estimated from domain discriminator and label predictor. Through this alignment, our proposed method makes the ADA aware of class relationships. Empirical studies show that the incorporation of class relationships significantly improves the performance on benchmark datasets.

    05/28/2019 ∙ by Zeya Wang, et al. ∙ 1 share

    read it

  • Learning Less-Overlapping Representations

    In representation learning (RL), how to make the learned representations easy to interpret and less overfitted to training data are two important but challenging issues. To address these problems, we study a new type of regulariza- tion approach that encourages the supports of weight vectors in RL models to have small overlap, by simultaneously promoting near-orthogonality among vectors and sparsity of each vector. We apply the proposed regularizer to two models: neural networks (NNs) and sparse coding (SC), and develop an efficient ADMM-based algorithm for regu- larized SC. Experiments on various datasets demonstrate that weight vectors learned under our regularizer are more interpretable and have better generalization performance.

    11/25/2017 ∙ by Pengtao Xie, et al. ∙ 0 share

    read it

  • Diversity-Promoting Bayesian Learning of Latent Variable Models

    To address three important issues involved in latent variable models (LVMs), including capturing infrequent patterns, achieving small-sized but expressive models and alleviating overfitting, several studies have been devoted to "diversifying" LVMs, which aim at encouraging the components in LVMs to be diverse. Most existing studies fall into a frequentist-style regularization framework, where the components are learned via point estimation. In this paper, we investigate how to "diversify" LVMs in the paradigm of Bayesian learning. We propose two approaches that have complementary advantages. One is to define a diversity-promoting mutual angular prior which assigns larger density to components with larger mutual angles and use this prior to affect the posterior via Bayes' rule. We develop two efficient approximate posterior inference algorithms based on variational inference and MCMC sampling. The other approach is to impose diversity-promoting regularization directly over the post-data distribution of components. We also extend our approach to "diversify" Bayesian nonparametric models where the number of components is infinite. A sampling algorithm based on slice sampling and Hamiltonian Monte Carlo is developed. We apply these methods to "diversify" Bayesian mixture of experts model and infinite latent feature model. Experiments on various datasets demonstrate the effectiveness and efficiency of our methods.

    11/23/2017 ∙ by Pengtao Xie, et al. ∙ 0 share

    read it

  • Medical Diagnosis From Laboratory Tests by Combining Generative and Discriminative Learning

    A primary goal of computational phenotype research is to conduct medical diagnosis. In hospital, physicians rely on massive clinical data to make diagnosis decisions, among which laboratory tests are one of the most important resources. However, the longitudinal and incomplete nature of laboratory test data casts a significant challenge on its interpretation and usage, which may result in harmful decisions by both human physicians and automatic diagnosis systems. In this work, we take advantage of deep generative models to deal with the complex laboratory tests. Specifically, we propose an end-to-end architecture that involves a deep generative variational recurrent neural networks (VRNN) to learn robust and generalizable features, and a discriminative neural network (NN) model to learn diagnosis decision making, and the two models are trained jointly. Our experiments are conducted on a dataset involving 46,252 patients, and the 50 most frequent tests are used to predict the 50 most common diagnoses. The results show that our model, VRNN+NN, significantly (p<0.001) outperforms other baseline models. Moreover, we demonstrate that the representations learned by the joint training are more informative than those learned by pure generative models. Finally, we find that our model offers a surprisingly good imputation for missing values.

    11/12/2017 ∙ by Shiyue Zhang, et al. ∙ 0 share

    read it