High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
We investigate the relationship between the frequency spectrum of image data and the generalization behavior of convolutional neural networks (CNN). We first notice CNN's ability in capturing the high-frequency components of images. These high-frequency components are almost imperceptible to a human. Thus the observation can serve as one of the explanations of the existence of adversarial examples, and can also help verify CNN's trade-off between robustness and accuracy. Our observation also immediately leads to methods that can improve the adversarial robustness of trained CNN. Finally, we also utilize this observation to design a (semi) black-box adversarial attack method.
READ FULL TEXT