Zespol: A Lightweight Environment for Training Swarming Agents

06/30/2023
by   Shay Snyder, et al.
0

Agent-based modeling (ABM) and simulation have emerged as important tools for studying emergent behaviors, especially in the context of swarming algorithms for robotic systems. Despite significant research in this area, there is a lack of standardized simulation environments, which hinders the development and deployment of real-world robotic swarms. To address this issue, we present Zespol, a modular, Python-based simulation environment that enables the development and testing of multi-agent control algorithms. Zespol provides a flexible and extensible sandbox for initial research, with the potential for scaling to real-world applications. We provide a topological overview of the system and detailed descriptions of its plug-and-play elements. We demonstrate the fidelity of Zespol in simulated and real-word robotics by replicating existing works highlighting the simulation to real gap with the milling behavior. We plan to leverage Zespol's plug-and-play feature for neuromorphic computing in swarming scenarios, which involves using the modules in Zespol to simulate the behavior of neurons and their connections as synapses. This will enable optimizing and studying the emergent behavior of swarm systems in complex environments. Our goal is to gain a better understanding of the interplay between environmental factors and neural-like computations in swarming systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset