Zero-shot Synthesis with Group-Supervised Learning

09/14/2020
by   Yunhao Ge, et al.
0

Visual cognition of primates is superior to that of artificial neural networks in its ability to 'envision' a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL decomposes inputs into a disentangled representation with swappable components that can be recombined to synthesize new samples, trained through similarity mining within groups of exemplars. For instance, images of red boats blue cars can be decomposed and recombined to synthesize novel images of red cars. We describe a general class of datasets admissible by GSL. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to new dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset