X-MLP: A Patch Embedding-Free MLP Architecture for Vision
Convolutional neural networks (CNNs) and vision transformers (ViT) have obtained great achievements in computer vision. Recently, the research of multi-layer perceptron (MLP) architectures for vision have been popular again. Vision MLPs are designed to be independent from convolutions and self-attention operations. However, existing vision MLP architectures always depend on convolution for patch embedding. Thus we propose X-MLP, an architecture constructed absolutely upon fully connected layers and free from patch embedding. It decouples the features extremely and utilizes MLPs to interact the information across the dimension of width, height and channel independently and alternately. X-MLP is tested on ten benchmark datasets, all obtaining better performance than other vision MLP models. It even surpasses CNNs by a clear margin on various dataset. Furthermore, through mathematically restoring the spatial weights, we visualize the information communication between any couples of pixels in the feature map and observe the phenomenon of capturing long-range dependency.
READ FULL TEXT