Which Model to Transfer? Finding the Needle in the Growing Haystack

10/13/2020 ∙ by Cèdric Renggli, et al. ∙ 19

Transfer learning has been recently popularized as a data-efficient alternative to training models from scratch, in particular in vision and NLP where it provides a remarkably solid baseline. The emergence of rich model repositories, such as TensorFlow Hub, enables the practitioners and researchers to unleash the potential of these models across a wide range of downstream tasks. As these repositories keep growing exponentially, efficiently selecting a good model for the task at hand becomes paramount. We provide a formalization of this problem through a familiar notion of regret and introduce the predominant strategies, namely task-agnostic (e.g. picking the highest scoring ImageNet model) and task-aware search strategies (such as linear or kNN evaluation). We conduct a large-scale empirical study and show that both task-agnostic and task-aware methods can yield high regret. We then propose a simple and computationally efficient hybrid search strategy which outperforms the existing approaches. We highlight the practical benefits of the proposed solution on a set of 19 diverse vision tasks.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.