## Acknowledgements

This study was supported by the Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001), by RFBR grants 16-31-60095-mol-a-dk, 16-31-00372-mol-a and by Skoltech NGP program.

## Bibliography

- [1] F. Vico, L. Greengard, and M. Ferrando, “Fast convolution with free-space Green’s functions,” Journal of Computational Physics, vol. 323, pp. 191–203, 2016.
- [2] V. Kazeev, B. Khoromskij, and E. Tyrtyshnikov, “Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity,” SIAM J. Sci. Comput., vol. 35, no. 3, pp. A1511–A1536, 2013.
- [3] I. V. Oseledets, “Approximation of matrices using tensor decomposition,” SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2130–2145, 2010.
- [4] L. a. Klinteberg, D. S. Shamshirgar, and A.-K. Tornberg, “Fast Ewald summation for free-space Stokes potentials,” arXiv preprint arXiv:1607.04808, 2016.
- [5] V. Kazeev and C. Schwab, “Quantized tensor-structured finite elements for second-order elliptic pdes in two dimensions,” tech. rep., SAM research report 2015-24, ETH Zürich, 2015.
- [6] V. Kazeev, I. Oseledets, M. Rakhuba, and C. Schwab, “QTT-finite-element approximation for multiscale problems I: model problems in one dimension,” Adv. Comp. Math., 2016.
- [7] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, no. 5, pp. 2295–2317, 2011.
- [8] S. V. Dolgov, B. N. Khoromskij, and D. V. Savostyanov, “Superfast Fourier transform using QTT approximation,” J. Fourier Anal. Appl., vol. 18, no. 5, pp. 915–953, 2012.
- [9] I. V. Oseledets and E. E. Tyrtyshnikov, “TT-cross approximation for multidimensional arrays,” Linear Algebra Appl., vol. 432, no. 1, pp. 70–88, 2010.
- [10] S. V. Dolgov and D. V. Savostyanov, “Alternating minimal energy methods for linear systems in higher dimensions. Part I: SPD systems,” arXiv preprint 1301.6068, 2013.
- [11] S. V. Dolgov and D. V. Savostyanov, “Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems,” arXiv preprint 1304.1222, 2013.
- [12] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear scheme for tensor optimization in the tensor train format,” SIAM J. Sci. Comput., vol. 34, no. 2, pp. A683–A713, 2012.

Comments

There are no comments yet.