UW-MARL: Multi-Agent Reinforcement Learning for Underwater Adaptive Sampling using Autonomous Vehicles
Near-real-time water-quality monitoring in uncertain environments such as rivers, lakes, and water reservoirs of different variables is critical to protect the aquatic life and to prevent further propagation of the potential pollution in the water. In order to measure the physical values in a region of interest, adaptive sampling is helpful as an energy- and time-efficient technique since an exhaustive search of an area is not feasible with a single vehicle. We propose an adaptive sampling algorithm using multiple autonomous vehicles, which are well-trained, as agents, in a Multi-Agent Reinforcement Learning (MARL) framework to make efficient sequence of decisions on the adaptive sampling procedure. The proposed solution is evaluated using experimental data, which is fed into a simulation framework. Experiments were conducted in the Raritan River, Somerset and in Carnegie Lake, Princeton, NJ during July 2019.
READ FULL TEXT