Using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms

09/04/2018
by   Nicholas J. Curtis, et al.
0

Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, extinction/ignition limits and pollutant formation, necessitates the use of detailed chemical kinetics. The large size and high levels of numerical stiffness typically present in chemical kinetic models relevant to transportation/power-generation applications make the efficient evaluation/factorization of the chemical kinetic Jacobian and thermochemical source-terms critical to the performance of reactive-flow codes. Here we investigate the performance of vectorized evaluation of constant-pressure/volume thermochemical source-term and sparse/dense chemical kinetic Jacobians using single-instruction, multiple-data (SIMD) and single-instruction, multiple thread (SIMT) paradigms. These are implemented in pyJac, an open-source, reproducible code generation platform. A new formulation of the chemical kinetic governing equations was derived and verified, resulting in Jacobian sparsities of 28.6-92.0 3.40-4.08x were found for shallow-vectorized OpenCL source-rate evaluation compared with a parallel OpenMP code on an avx2 central processing unit (CPU), increasing to 6.63-9.44x and 3.03-4.23x for sparse and dense chemical kinetic Jacobian evaluation, respectively. Furthermore, the effect of data-ordering was investigated and a storage pattern specifically formulated for vectorized evaluation was proposed; as well, the effect of the constant pressure/volume assumptions and varying vector widths were studied on source-term evaluation performance. Speedups reached up to 17.60x and 45.13x for dense and sparse evaluation on the GPU, and up to 55.11x and 245.63x on the CPU over a first-order finite-difference Jacobian approach. Further, dense Jacobian evaluation was up to 19.56x and 2.84x times faster than a previous version of pyJac on a CPU and GPU, respectively.

READ FULL TEXT

page 4

page 22

research
01/21/2019

Efficient Tsunami Modeling on Adaptive Grids with Graphics Processing Units (GPUs)

Solving the shallow water equations efficiently is critical to the study...
research
05/25/2021

Fast reactive flow simulations using analytical Jacobian and dynamic load balancing in OpenFOAM

Detailed chemistry-based computational fluid dynamics (CFD) simulations ...
research
11/16/2020

DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM

Computational load imbalance due to direct integration of chemical kinet...
research
09/12/2023

Numerical Study of Distorted Tulip Flame Propagation in Confined Systems

Understanding the dynamics of premixed flames that propagates in confine...
research
10/16/2020

Modelling of a spherical deflagration at constant speed

We build in this paper a numerical solution procedure to compute the flo...
research
05/09/2023

Sparse Stream Semantic Registers: A Lightweight ISA Extension Accelerating General Sparse Linear Algebra

Sparse linear algebra is crucial in many application domains, but challe...
research
08/09/2021

Preparing for Performance Analysis at Exascale

Performance tools for emerging heterogeneous exascale platforms must add...

Please sign up or login with your details

Forgot password? Click here to reset