References
- [1] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.
-
[2]
S. Pitis, “Recurrent neural networks in tensorflow i.”
https://r2rt.com/recurrent-neural-networks-in-tensorflow-i.html, 2016. - [3] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using synthetic gradients,” in Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1627–1635, JMLR. org, 2017.
- [4] J. T. Dudman, D. Tsay, and S. A. Siegelbaum, “A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity,” Neuron, vol. 56, no. 5, pp. 866–879, 2007.
- [5] P. Somogyi, L. Katona, T. Klausberger, B. Lasztóczi, and T. J. Viney, “Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 369, no. 1635, p. 20120518, 2014.
- [6] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,” in International conference on machine learning, pp. 1310–1318, 2013.
-
[7]
J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning with segregated dendrites,”
ELife, vol. 6, p. e22901, 2017.