Universal points in the asymptotic spectrum of tensors

09/22/2017
by   Matthias Christandl, et al.
0

The asymptotic restriction problem for tensors is to decide, given tensors s and t, whether the nth tensor power of s can be obtained from the (n+o(n))th tensor power of t by applying linear maps to the tensor legs (this we call restriction), when n goes to infinity. In this context, Volker Strassen, striving to understand the complexity of matrix multiplication, introduced in 1986 the asymptotic spectrum of tensors. Essentially, the asymptotic restriction problem for a family of tensors X, closed under direct sum and tensor product, reduces to finding all maps from X to the reals that are monotone under restriction, normalised on diagonal tensors, additive under direct sum and multiplicative under tensor product, which Strassen named spectral points. Strassen created the support functionals, which are spectral points for oblique tensors, a strict subfamily of all tensors. Universal spectral points are spectral points for the family of all tensors. The construction of nontrivial universal spectral points has been an open problem for more than thirty years. We construct for the first time a family of nontrivial universal spectral points over the complex numbers, using quantum entropy and covariants: the quantum functionals. In the process we connect the asymptotic spectrum to the quantum marginal problem and to the entanglement polytope. To demonstrate the asymptotic spectrum, we reprove (in hindsight) recent results on the cap set problem by reducing this problem to computing asymptotic spectrum of the reduced polynomial multiplication tensor, a prime example of Strassen. A better understanding of our universal spectral points construction may lead to further progress on related questions. We additionally show that the quantum functionals are an upper bound on the recently introduced (multi-)slice rank.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
07/10/2020

Border rank non-additivity for higher order tensors

Whereas matrix rank is additive under direct sum, in 1981 Schönhage show...
research
06/02/2023

Discreteness of asymptotic tensor ranks

Tensor parameters that are amortized or regularized over large tensor po...
research
04/02/2021

Communication Complexity, Corner-Free Sets and the Symmetric Subrank of Tensors

We develop and apply new combinatorial and algebraic tools to understand...
research
12/28/2020

Weighted Slice Rank and a Minimax Correspondence to Strassen's Spectra

Structural and computational understanding of tensors is the driving for...
research
08/18/2017

Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor

In the past few years, successive improvements of the asymptotic complex...
research
12/28/2022

Partial Degeneration of Tensors

Tensors are often studied by introducing preorders such as restriction a...
research
12/23/2022

Countably many asymptotic tensor ranks

In connection with recent work on gaps in the asymptotic subranks of com...

Please sign up or login with your details

Forgot password? Click here to reset