Towards thinner convolutional neural networks through Gradually Global Pruning

03/29/2017
by   Zhengtao Wang, et al.
0

Deep network pruning is an effective method to reduce the storage and computation cost of deep neural networks when applying them to resource-limited devices. Among many pruning granularities, neuron level pruning will remove redundant neurons and filters in the model and result in thinner networks. In this paper, we propose a gradually global pruning scheme for neuron level pruning. In each pruning step, a small percent of neurons were selected and dropped across all layers in the model. We also propose a simple method to eliminate the biases in evaluating the importance of neurons to make the scheme feasible. Compared with layer-wise pruning scheme, our scheme avoid the difficulty in determining the redundancy in each layer and is more effective for deep networks. Our scheme would automatically find a thinner sub-network in original network under a given performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset