Towards Efficient Processing and Learning with Spikes: New Approaches for Multi-Spike Learning

05/02/2020
by   Qiang Yu, et al.
7

Spikes are the currency in central nervous systems for information transmission and processing. They are also believed to play an essential role in low-power consumption of the biological systems, whose efficiency attracts increasing attentions to the field of neuromorphic computing. However, efficient processing and learning of discrete spikes still remains as a challenging problem. In this paper, we make our contributions towards this direction. A simplified spiking neuron model is firstly introduced with effects of both synaptic input and firing output on membrane potential being modeled with an impulse function. An event-driven scheme is then presented to further improve the processing efficiency. Based on the neuron model, we propose two new multi-spike learning rules which demonstrate better performance over other baselines on various tasks including association, classification, feature detection. In addition to efficiency, our learning rules demonstrate a high robustness against strong noise of different types. They can also be generalized to different spike coding schemes for the classification task, and notably single neuron is capable of solving multi-category classifications with our learning rules. In the feature detection task, we re-examine the ability of unsupervised STDP with its limitations being presented, and find a new phenomenon of losing selectivity. In contrast, our proposed learning rules can reliably solve the task over a wide range of conditions without specific constraints being applied. Moreover, our rules can not only detect features but also discriminate them. The improved performance of our methods would contribute to neuromorphic computing as a preferable choice.

READ FULL TEXT

page 2

page 3

page 4

page 5

page 6

page 7

page 11

page 12

research
05/11/2020

Synaptic Learning with Augmented Spikes

Traditional neuron models use analog values for information representati...
research
04/21/2021

Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning

Neuromorphic computing and spiking neural networks (SNN) mimic the behav...
research
03/05/2020

Minimal spiking neuron for solving multi-label classification tasks

The Multi-Spike Tempotron (MST) is a powerful single spiking neuron mode...
research
06/28/2022

Simple and complex spiking neurons: perspectives and analysis in a simple STDP scenario

Spiking neural networks (SNNs) are largely inspired by biology and neuro...
research
02/04/2019

Robust Environmental Sound Recognition with Sparse Key-point Encoding and Efficient Multi-spike Learning

The capability for environmental sound recognition (ESR) can determine t...
research
12/28/2021

Reliability of Event Timing in Silicon Neurons

Analog, low-voltage electronics show great promise in producing silicon ...
research
09/29/2017

Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning

Embedded, continual learning for autonomous and adaptive behavior is a k...

Please sign up or login with your details

Forgot password? Click here to reset