Towards Consistent Batch State Estimation Using a Time-Correlated Measurement Noise Model

03/11/2023
by   David J. Yoon, et al.
0

In this paper, we present an algorithm for learning time-correlated measurement covariances for application in batch state estimation. We parameterize the inverse measurement covariance matrix to be block-banded, which conveniently factorizes and results in a computationally efficient approach for correlating measurements across the entire trajectory. We train our covariance model through supervised learning using the groundtruth trajectory. In applications where the measurements are time-correlated, we demonstrate improved performance in both the mean posterior estimate and the covariance (i.e., improved estimator consistency). We use an experimental dataset collected using a mobile robot equipped with a laser rangefinder to demonstrate the improvement in performance. We also verify estimator consistency in a controlled simulation using a statistical test over several trials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro