The Sliding Window Discrete Fourier Transform

07/20/2018
by   Lee F. Richardson, et al.
0

This paper introduces a new tool for time-series analysis: the Sliding Window Discrete Fourier Transform (SWDFT). The SWDFT is especially useful for time-series with local- in-time periodic components. We define a 5-parameter model for noiseless local periodic signals, then study the SWDFT of this model. Our study illustrates several key concepts crucial to analyzing time-series with the SWDFT, in particular Aliasing, Leakage, and Ringing. We also show how these ideas extend to R > 1 local periodic components, using the linearity property of the Fourier transform. Next, we propose a simple procedure for estimating the 5 parameters of our local periodic signal model using the SWDFT. Our estimation procedure speeds up computation by using a trigonometric identity that linearizes estimation of 2 of the 5 parameters. We conclude with a very small Monte Carlo simulation study of our estimation procedure under different levels of noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset