The merged-staircase property: a necessary and nearly sufficient condition for SGD learning of sparse functions on two-layer neural networks

02/17/2022
by   Emmanuel Abbe, et al.
0

It is currently known how to characterize functions that neural networks can learn with SGD for two extremal parameterizations: neural networks in the linear regime, and neural networks with no structural constraints. However, for the main parametrization of interest (non-linear but regular networks) no tight characterization has yet been achieved, despite significant developments. We take a step in this direction by considering depth-2 neural networks trained by SGD in the mean-field regime. We consider functions on binary inputs that depend on a latent low-dimensional subspace (i.e., small number of coordinates). This regime is of interest since it is poorly understood how neural networks routinely tackle high-dimensional datasets and adapt to latent low-dimensional structure without suffering from the curse of dimensionality. Accordingly, we study SGD-learnability with O(d) sample complexity in a large ambient dimension d. Our main results characterize a hierarchical property, the "merged-staircase property", that is both necessary and nearly sufficient for learning in this setting. We further show that non-linear training is necessary: for this class of functions, linear methods on any feature map (e.g., the NTK) are not capable of learning efficiently. The key tools are a new "dimension-free" dynamics approximation result that applies to functions defined on a latent space of low-dimension, a proof of global convergence based on polynomial identity testing, and an improvement of lower bounds against linear methods for non-almost orthogonal functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset