The complexity of approximating the complex-valued Potts model

05/03/2020
by   Andreas Galanis, et al.
0

We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q=2, which corresponds to the case of the Ising model; for q>2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.

READ FULL TEXT

Authors

page 1

page 2

page 3

page 4

06/26/2020

Lee-Yang zeros and the complexity of the ferromagnetic Ising Model on bounded-degree graphs

We study the computational complexity of approximating the partition fun...
05/01/2021

The complexity of approximating the complex-valued Ising model on bounded degree graphs

We study the complexity of approximating the partition function Z_Ising(...
05/08/2019

Zeros and approximations of Holant polynomials on the complex plane

We present fully polynomial approximation schemes for general classes of...
07/13/2018

The complexity of approximating the matching polynomial in the complex plane

We study the problem of approximating the value of the matching polynomi...
11/01/2017

Inapproximability of the independent set polynomial in the complex plane

We study the complexity of approximating the independent set polynomial ...
01/10/2022

A full dichotomy for Holant^c, inspired by quantum computation

Holant problems are a family of counting problems parameterised by sets ...
04/10/2019

CNM: An Interpretable Complex-valued Network for Matching

This paper seeks to model human language by the mathematical framework o...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.