The Augmented Synthetic Control Method

11/10/2018
by   Eli Ben-Michael, et al.
0

The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes as closely as possible. The curse of dimensionality, however, means that SCM does not generally achieve exact balance, which can bias the SCM estimate. We propose an extension, Augmented SCM, which uses an outcome model to estimate the bias due to covariate imbalance and then de-biases the original SCM estimate, analogous to bias correction for inexact matching. We motivate this approach by showing that SCM is a (regularized) inverse propensity score weighting estimator, with pre-treatment outcomes as covariates and a ridge penalty on the propensity score coefficients. We give theoretical guarantees for specific cases and propose a new inference procedure. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to canonical SCM examples. We implement the proposed method in the new augsynth R package.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset