System Reliability, Fault Tolerance and Design Metrics Tradeoffs in the Distributed Minority and Majority Voting Based Redundancy Scheme

08/25/2016
by   P Balasubramanian, et al.
0

The distributed minority and majority voting based redundancy (DMMR) scheme was recently proposed as an efficient alternative to the conventional N-modular redundancy (NMR) scheme for the physical design of mission/safety-critical circuits and systems. The DMMR scheme enables significant improvements in fault tolerance and design metrics compared to the NMR scheme albeit at the expense of a slight decrease in the system reliability. In this context, this paper studies the system reliability, fault tolerance and design metrics tradeoffs in the DMMR scheme compared to the NMR scheme when the majority logic group of the DMMR scheme is increased in size relative to the minority logic group. Some example DMMR and NMR systems were realized using a 32/28nm CMOS process and compared. The results show that 5-of-M DMMR systems have a similar or better fault tolerance whilst requiring similar or fewer function modules than their counterpart NMR systems and simultaneously achieve optimizations in design metrics. Nevertheless, 3-of-M DMMR systems have the upper hand with respect to fault tolerance and design metrics optimizations than the comparable NMR and 5-of-M DMMR systems. With regard to system reliability, NMR systems are closely followed by 5-of-M DMMR systems which are closely followed by 3-of-M DMMR systems. The verdict is 3-of-M DMMR systems are preferable to implement higher levels of redundancy from a combined system reliability, fault tolerance and design metrics perspective to realize mission/safety-critical circuits and systems.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
11/29/2016

FPGA Based Implementation of Distributed Minority and Majority Voting Based Redundancy for Mission and Safety-Critical Applications

Electronic circuits and systems used in mission and safety-critical appl...
research
07/21/2017

Redundant Logic Insertion and Fault Tolerance Improvement in Combinational Circuits

This paper presents a novel method to identify and insert redundant logi...
research
09/23/2022

Analysis of Fault Tolerant Multi-stage Switch Architecture for TSN

We conducted the feasibility analysis of utilizing a highly available mu...
research
04/01/2021

Investigating the Reliability in Three RAID Storage Models and Effect of Ordering Replicas on Disks

One of the most important parts of cloud computing is storage devices, a...
research
12/11/2019

Breaking the Limits of Redundancy Systems Analysis

Redundancy mechanisms such as triple modular redundancy protect safety-c...
research
02/14/2018

Advancing System Performance with Redundancy: From Biological to Artificial Designs

Redundancy is a fundamental characteristic of many biological processes ...
research
05/12/2016

A Fault Tolerance Improved Majority Voter for TMR System Architectures

For digital system designs, triple modular redundancy (TMR), which is a ...

Please sign up or login with your details

Forgot password? Click here to reset