Symbolic Music Structure Analysis with Graph Representations and Changepoint Detection Methods
Music Structure Analysis is an open research task in Music Information Retrieval (MIR). In the past, there have been several works that attempt to segment music into the audio and symbolic domains, however, the identification and segmentation of the music structure at different levels is still an open research problem in this area. In this work we propose three methods, two of which are novel graph-based algorithms that aim to segment symbolic music by its form or structure: Norm, G-PELT and G-Window. We performed an ablation study with two public datasets that have different forms or structures in order to compare such methods varying their parameter values and comparing the performance against different music styles. We have found that encoding symbolic music with graph representations and computing the novelty of Adjacency Matrices obtained from graphs represent the structure of symbolic music pieces well without the need to extract features from it. We are able to detect the boundaries with an online unsupervised changepoint detection method with a F_1 of 0.5640 for a 1 bar tolerance in one of the public datasets that we used for testing our methods. We also provide the performance results of the algorithms at different levels of structure, high, medium and low, to show how the parameters of the proposed methods have to be adjusted depending on the level. We added the best performing method with its parameters for each structure level to musicaiz, an open source python package, to facilitate the reproducibility and usability of this work. We hope that this methods could be used to improve other MIR tasks such as music generation with structure, music classification or key changes detection.
READ FULL TEXT