Super-model ecosystem: A domain-adaptation perspective
This paper attempts to establish the theoretical foundation for the emerging super-model paradigm via domain adaptation, where one first trains a very large-scale model, i.e., super model (or foundation model in some other papers), on a large amount of data and then adapts it to various specific domains. Super-model paradigms help reduce computational and data cost and carbon emission, which is critical to AI industry, especially enormous small and medium-sized enterprises. We model the super-model paradigm as a two-stage diffusion process: (1) in the pre-training stage, the model parameter diffuses from random initials and converges to a steady distribution; and (2) in the fine-tuning stage, the model parameter is transported to another steady distribution. Both training stages can be mathematically modeled by the Uhlenbeck-Ornstein process which converges to two Maxwell-Boltzmann distributions, respectively, each of which characterizes the corresponding convergent model. An 𝒪(1/√(N)) generalization bound is then established via PAC-Bayesian framework. The theory finds that the generalization error of the fine-tuning stage is dominant in domain adaptation. In addition, our theory suggests that the generalization is determined by a new measure that characterizes the domain discrepancy between the source domain and target domain, based on the covariance matrices and the shift of the converged local minimum.
READ FULL TEXT