SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization

04/15/2021 ∙ by Jesse Vig, et al. ∙ 21

Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis, the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at



There are no comments yet.


page 1

page 2

page 3

page 4

Code Repositories


SummVis is an interactive visualization tool for text summarization.

view repo


Organize information on scientific papers with R

view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.