Student Performance Prediction with Optimum Multilabel Ensemble Model

09/06/2019
by   Ephrem Admasu Yekun, et al.
0

One of the important measures of quality of education is the performance of students in the academic settings. Nowadays, abundant data is stored in educational institutions about students which can help to discover insight on how students are learning and how to improve their performance ahead of time using data mining techniques. In this paper, we developed a student performance prediction model that predicts the performance of high school students for the next semester for five courses. We modeled our prediction system as a multi-label classification task and used support vector machine (SVM), Random Forest (RF), K-nearest Neighbors (KNN), and Mult-layer perceptron (MLP) as base-classifiers to train our model. We further improved the performance of the prediction model using state-of-the-art partitioning schemes to divide the label space into smaller spaces and use Label Powerset (LP) transformation method to transform each labelset into a multi-class classification task. The proposed model achieved better performance in terms of different evaluation metrics when compared to other multi-label learning tasks such as binary relevance and classifier chains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro