Structural Breaks in Time Series
This chapter covers methodological issues related to estimation, testing and computation for models involving structural changes. Our aim is to review developments as they relate to econometric applications based on linear models. Substantial advances have been made to cover models at a level of generality that allow a host of interesting practical applications. These include models with general stationary regressors and errors that can exhibit temporal dependence and heteroskedasticity, models with trending variables and possible unit roots and cointegrated models, among others. Advances have been made pertaining to computational aspects of constructing estimates, their limit distributions, tests for structural changes, and methods to determine the number of changes present. A variety of topics are covered. The first part summarizes and updates developments described in an earlier review, Perron (2006), with the exposition following heavily that of Perron (2008). Additions are included for recent developments: testing for common breaks, models with endogenous regressors (emphasizing that simply using least-squares is preferable over instrumental variables methods), quantile regressions, methods based on Lasso, panel data models, testing for changes in forecast accuracy, factors models and methods of inference based on a continuous records asymptotic framework. Our focus is on the so-called off-line methods whereby one wants to retrospectively test for breaks in a given sample of data and form confidence intervals about the break dates. The aim is to provide the readers with an overview of methods that are of direct usefulness in practice as opposed to issues that are mostly of theoretical interest.
READ FULL TEXT