Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticity

by   Zhibao Zheng, et al.

This paper presents stochastic virtual element methods for propagating uncertainty in linear elastic stochastic problems. We first derive stochastic virtual element equations for 2D and 3D linear elastic problems that may involve uncertainties in material properties, external forces, etc. A stochastic virtual element space that couples the deterministic virtual element space and the stochastic space is constructed for this purpose and used to approximate the unknown stochastic solution. Two numerical frameworks are then developed to solve the derived stochastic virtual element equations, including a Polynomial Chaos approximation based approach and a weakly intrusive approximation based approach. In the PC based framework, the stochastic solution is approximated using the Polynomial Chaos basis and solved via an augmented deterministic virtual element equation that is generated by applying the stochastic Galerkin procedure to the original stochastic virtual element equation. In the weakly intrusive approximation based framework, the stochastic solution is approximated by a summation of a set of products of random variables and deterministic vectors, where the deterministic vectors are solved via converting the original stochastic problem to deterministic virtual element equations by the stochastic Galerkin approach, and the random variables are solved via converting the original stochastic problem to one-dimensional stochastic algebraic equations by the classical Galerkin procedure. This method avoids the curse of dimensionality of high-dimensional stochastic problems successfully since all random inputs are embedded into one-dimensional stochastic algebraic equations whose computational effort weakly depends on the stochastic dimension. Numerical results on 2D and 3D problems with low- and high-dimensional random inputs demonstrate the good performance of the proposed methods.


page 21

page 23

page 30


The Helmholtz equation with uncertainties in the wavenumber

We investigate the Helmholtz equation with suitable boundary conditions ...

A stochastic LATIN method for stochastic and parameterized elastoplastic analysis

The LATIN method has been developed and successfully applied to a variet...

Energy-based model order reduction for linear stochastic Galerkin systems of second order

We consider a second-order linear system of ordinary differential equati...

Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations

We consider linear first-order systems of ordinary differential equation...

The conforming virtual element method for polyharmonic and elastodynamics problems: a review

In this paper, we review recent results on the conforming virtual elemen...

Programming of linear virtual element methods in three dimensions

We present a simple and efficient MATLAB implementation of the linear vi...

Approximation of Algebraic Riccati Equations with Generators of Noncompact Semigroups

In this work, we demonstrate that the Bochner integral representation of...

Please sign up or login with your details

Forgot password? Click here to reset