Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics
Training data is the key ingredient for deep learning approaches, but difficult to obtain for the specialized domains often encountered in robotics. We describe a synthesis pipeline capable of producing training data for cluttered scene perception tasks such as semantic segmentation, object detection, and correspondence or pose estimation. Our approach arranges object meshes in physically realistic, dense scenes using physics simulation. The arranged scenes are rendered using high-quality rasterization with randomized appearance and material parameters. Noise and other transformations introduced by the camera sensors are simulated. Our pipeline can be run online during training of a deep neural network, yielding applications in life-long learning and in iterative render-and-compare approaches. We demonstrate the usability by learning semantic segmentation on the challenging YCB-Video dataset without actually using any training frames, where our method achieves performance comparable to a conventionally trained model. Additionally, we show successful application in a real-world regrasping system.
READ FULL TEXT