Steepest Descent Neural Architecture Optimization: Escaping Local Optimum with Signed Neural Splitting

03/23/2020
by   Lemeng Wu, et al.
7

We propose signed splitting steepest descent (S3D), which progressively grows neural architectures by splitting critical neurons into multiple copies, following a theoretically-derived optimal scheme. Our algorithm is a generalization of the splitting steepest descent (S2D) of Liu et al. (2019b), but significantly improves over it by incorporating a rich set of new splitting schemes that allow negative output weights. By doing so, we can escape local optima that the original S2D can not escape. Theoretically, we show that our method provably learns neural networks with much smaller sizes than these needed for standard gradient descent in overparameterized regimes. Empirically, our method outperforms S2D and prior arts on various challenging benchmarks, including CIFAR-100, ImageNet and ModelNet40.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset