Statistical Verification of Hyperproperties for Cyber-Physical System

06/17/2019
by   Yu Wang, et al.
0

Many important properties of cyber-physical systems (CPS) are defined upon the relationship between multiple executions simultaneously in continuous time. Examples include probabilistic fairness and sensitivity to modeling errors (i.e., parameters changes) for real-valued signals. These requirements can only be specified by hyperproperties. In this work, we focus on verifying probabilistic hyperproperties for CPS. To cover a wide range of modeling formalisms, we first propose a general model of probabilistic uncertain systems (PUSs) that unify commonly studied CPS models such as continuous-time Markov chains (CTMCs) and probabilistically parametrized Hybrid I/O Automata. To formally specify hyperproperties, we propose a new temporal logic, hyper probabilistic signal temporal logic (HyperPSTL) that serves as a hyper and probabilistic version of the conventional signal temporal logic (STL). Considering complexity of real-world systems that can be captured as PUSs, we adopt a statistical model checking (SMC) approach for their verification. We develop a new SMC technique based on the direct computation of the significance levels of statistical assertions for HyperPSTL specifications, which requires no a priori knowledge on the indifference margin. Then, we introduce SMC algorithms for HyperPSTL specifications on the joint probabilistic distribution of multiple paths, as well as specifications with nested probabilistic operators quantifying different paths, which cannot be handled by existing SMC algorithms. Finally, we show the effectiveness of our SMC algorithms on CPS benchmarks with varying levels of complexity, including the Toyota Powertrain Control System.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/11/2019

Statistical Model Checking for Probabilistic Hyperproperties

In this paper, we propose the temporal logic HyperPCTL^* that extends PC...
research
12/21/2022

RobTL: A Temporal Logic for the Robustness of Cyber-Physical Systems

We propose the Robustness Temporal Logic (RobTL), a novel temporal logic...
research
04/26/2023

Verifying linear temporal specifications of constant-rate multi-mode systems

Constant-rate multi-mode systems (MMS) are hybrid systems with finitely ...
research
12/12/2017

Toward `verifying' a Water Treatment System

Modeling and verifying real-world cyber-physical systems are challenging...
research
04/28/2022

EvTL: A Temporal Logic for the Transient Analysis of Cyber-Physical Systems

The behaviour of systems characterised by a closed interaction of softwa...
research
08/01/2018

Metrics for Signal Temporal Logic Formulae

Signal Temporal Logic (STL) is a formal language for describing a broad ...
research
10/25/2015

Safe Control under Uncertainty

Controller synthesis for hybrid systems that satisfy temporal specificat...

Please sign up or login with your details

Forgot password? Click here to reset