SoK: Certified Robustness for Deep Neural Networks

09/09/2020 ∙ by Linyi Li, et al. ∙ 13

Great advancement in deep neural networks (DNNs) has led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: 1) empirical defenses, which can be adaptively attacked again without providing robustness certification; and 2) certifiably robust approaches, which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we focus on these certifiably robust approaches and provide the first work to perform large-scale systematic analysis of different robustness verification and training approaches. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as discuss the detailed methodologies for representative algorithms, 2) reveal the fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and several promising future directions for certified defenses for DNNs, and 4) provide an open-sourced unified platform to evaluate 20+ representative verification and corresponding robust training approaches on a wide range of DNNs.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 13

page 14

page 15

page 16

page 18

page 20

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.