Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

11/14/2021
by   Simon Tarboush, et al.
0

The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path (MP) components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of MP components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate the robustness of discrete-Fourier-transform spread OFDM (DFT-s-OFDM) to THz impairments and orthogonal time-frequency space (OTFS) to THz Doppler spreads.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset