ShieldDB: An Encrypted Document Database with Padding Countermeasures
The security of our data stores is underestimated in current practice, which resulted in many large-scale data breaches. To change the status quo, this paper presents the design of ShieldDB, an encrypted document database. ShieldDB adapts the searchable encryption technique to preserve the search functionality over encrypted documents without having much impact on its scalability. However, merely realising such a theoretical primitive suffers from real-world threats, where a knowledgeable adversary can exploit the leakage (aka access pattern to the database) to break the claimed protection on data confidentiality. To address this challenge in practical deployment, ShieldDB is designed with tailored padding countermeasures. Unlike prior works, we target a more realistic adversarial model, where the database gets updated continuously, and the adversary can monitor it at an (or multiple) arbitrary time interval(s). ShieldDB's padding strategies ensure that the access pattern to the database is obfuscated all the time. Additionally, ShieldDB provides other advanced features, including forward privacy, re-encryption, and flushing, to further improve its security and efficiency. We present a full-fledged implementation of ShieldDB and conduct intensive evaluations on Azure Cloud.
READ FULL TEXT