Separation of Memory and Processing in Dual Recurrent Neural Networks

05/17/2020
by   Christian Oliva, et al.
0

We explore a neural network architecture that stacks a recurrent layer and a feedforward layer that is also connected to the input, and compare it to standard Elman and LSTM architectures in terms of accuracy and interpretability. When noise is introduced into the activation function of the recurrent units, these neurons are forced into a binary activation regime that makes the networks behave much as finite automata. The resulting models are simpler, easier to interpret and get higher accuracy on different sample problems, including the recognition of regular languages, the computation of additions in different bases and the generation of arithmetic expressions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro