Selfish Sparse RNN Training

01/22/2021 ∙ by Shiwei Liu, et al. ∙ 11

Sparse neural networks have been widely applied to reduce the necessary resource requirements to train and deploy over-parameterized deep neural networks. For inference acceleration, methods that induce sparsity from a pre-trained dense network (dense-to-sparse) work effectively. Recently, dynamic sparse training (DST) has been proposed to train sparse neural networks without pre-training a dense network (sparse-to-sparse), so that the training process can also be accelerated. However, previous sparse-to-sparse methods mainly focus on Multilayer Perceptron Networks (MLPs) and Convolutional Neural Networks (CNNs), failing to match the performance of dense-to-sparse methods in Recurrent Neural Networks (RNNs) setting. In this paper, we propose an approach to train sparse RNNs with a fixed parameter count in one single run, without compromising performance. During training, we allow RNN layers to have a non-uniform redistribution across cell gates for a better regularization. Further, we introduce SNT-ASGD, a variant of the averaged stochastic gradient optimizer, which significantly improves the performance of all sparse training methods for RNNs. Using these strategies, we achieve state-of-the-art sparse training results with various types of RNNs on Penn TreeBank and Wikitext-2 datasets.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 19

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.