Self-localization from Images with Small Overlap
With the recent success of visual features from deep convolutional neural networks (DCNN) in visual robot self-localization, it has become important and practical to address more general self-localization scenarios. In this paper, we address the scenario of self-localization from images with small overlap. We explicitly introduce a localization difficulty index as a decreasing function of view overlap between query and relevant database images and investigate performance versus difficulty for challenging cross-view self-localization tasks. We then reformulate the self-localization as a scalable bag-of-visual-features (BoVF) scene retrieval and present an efficient solution called PCA-NBNN, aiming to facilitate fast and yet discriminative correspondence between partially overlapping images. The proposed approach adopts recent findings in discriminativity preserving encoding of DCNN features using principal component analysis (PCA) and cross-domain scene matching using naive Bayes nearest neighbor distance metric (NBNN). We experimentally demonstrate that the proposed PCA-NBNN framework frequently achieves comparable results to previous DCNN features and that the BoVF model is significantly more efficient. We further address an important alternative scenario of "self-localization from images with NO overlap" and report the result.
READ FULL TEXT