Seizure Classification Using Parallel Genetic Naive Bayes Classifiers

10/04/2021
by   Scot Davidson, et al.
0

Epilepsy affects 50 million people worldwide and is one of the most common serious brain disorders. Seizure detection and classification is a valuable tool for maintaining the condition. An automated detection algorithm will allow for accurate diagnosis. This study proposes a method using unique features with a novel parallel classifier trained using a genetic algorithm. Ictal states from the EEG are segmented into 1.8 s windows, where the epochs are then further decomposed into 13 different features from the first IMF. All of the features are fed into a genetic algorithm (Binary Grey Wolf Optimisation Option 1) with a Naive Bayes classifier. Combining the simple partial and complex partial seizures provides the highest accuracy of all the models tested.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset