secureTF: A Secure TensorFlow Framework

01/20/2021 ∙ by Do Le Quoc, et al. ∙ 0

Data-driven intelligent applications in modern online services have become ubiquitous. These applications are usually hosted in the untrusted cloud computing infrastructure. This poses significant security risks since these applications rely on applying machine learning algorithms on large datasets which may contain private and sensitive information. To tackle this challenge, we designed secureTF, a distributed secure machine learning framework based on Tensorflow for the untrusted cloud infrastructure. secureTF is a generic platform to support unmodified TensorFlow applications, while providing end-to-end security for the input data, ML model, and application code. secureTF is built from ground-up based on the security properties provided by Trusted Execution Environments (TEEs). However, it extends the trust of a volatile memory region (or secure enclave) provided by the single node TEE to secure a distributed infrastructure required for supporting unmodified stateful machine learning applications running in the cloud. The paper reports on our experiences about the system design choices and the system deployment in production use-cases. We conclude with the lessons learned based on the limitations of our commercially available platform, and discuss open research problems for the future work.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.