Scale estimation and data-driven tuning constant selection for M-quantile regression

11/20/2020
by   James Dawber, et al.
0

M-quantile regression is a general form of quantile-like regression which usually utilises the Huber influence function and corresponding tuning constant. Estimation requires a nuisance scale parameter to ensure the M-quantile estimates are scale invariant, with several scale estimators having previously been proposed. In this paper we assess these scale estimators and evaluate their suitability, as well as proposing a new scale estimator based on the method of moments. Further, we present two approaches for estimating data-driven tuning constant selection for M-quantile regression. The tuning constants are obtained by i) minimising the estimated asymptotic variance of the regression parameters and ii) utilising an inverse M-quantile function to reduce the effect of outlying observations. We investigate whether data-driven tuning constants, as opposed to the usual fixed constant, for instance, at c=1.345, can improve the efficiency of the estimators of M-quantile regression parameters. The performance of the data-driven tuning constant is investigated in different scenarios using model-based simulations. Finally, we illustrate the proposed methods using a European Union Statistics on Income and Living Conditions data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro