Rule Based Metadata Extraction Framework from Academic Articles
Metadata of scientific articles such as title, abstract, keywords or index terms, body text, conclusion, reference and others play a decisive role in collecting, managing and storing academic data in scientific databases, academic journals and digital libraries. An accurate extraction of these kinds of data from scientific papers is crucial to organize and retrieve important scientific information for researchers as well as librarians. Research social network systems and academic digital library systems provide academic data extracting, organizing and retrieving services. Mostly these types of services are not free or open source. They also have some performance problems and extracting limitations in the number of PDF (Portable Document Format) files that you can upload to the extraction systems. In this paper, a completely free and open source Java based high performance metadata extraction framework is proposed. This frameworks extraction speed is 9-10 times faster than existing metadata extraction systems. It is also flexible in that it allows uploading of unlimited number of PDF files. In this approach, titles of papers are extracted using layout features, font and size characteristics of text. Other metadata fields such as abstracts, body text, keywords, conclusions and references are extracted from PDF files using fixed rule sets. Extracted metadata are stored in both Oracle database and XML (Extensible Markup Language) file. This framework can be used to make scientific collections in digital libraries, online journals, online and offline scientific databases, government research agencies and research centers.
READ FULL TEXT